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Silver Plasmonic Systems: What and Where?

Surface Plasmon Resonance:

 Collective oscillation of conduction electrons at the dielectric-metal 
interface of a nanoparticle stimulated by incident light of matching 
wavelength.

 Highest near field enhancement by silver among the plasmonic 
noble metals like Au, Ag, Pt, Cu etc.

 Size tuneable plasmonic properties – FEM vital tool for analysis
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*Darya Radziuk et al. Phys. Chem. Chem. Phys., 2015, 17, 21072

Applications:

 Biophotonics

 Sensing, Imaging and Therapeutics

 SERS

 Identification of chemical species

 Plasmon enhanced semiconductor 
photocatalysis – TiO2 systems.

Time domain simulation of Ag NP (~20 nm) in air, λinc = 355 nm



Modeling of plasmonic nanoparticles in COMSOL

 COMSOL Wave Optics physics in wavelength domain study.

 Solution to Maxwell’s electromagnetic wave equation:

𝛻 ×
1

µr
𝛻 × E − K0

2(Ɛr−
j σ

ωƐ0
)E = 0

where E – scattered electric field

K0 - wavenumber in free space

µr - relative permeability of medium

Ɛr – permittivity of medium

 PML layers to truncate the domain and avoid internal reflections 

 Linear polarized plane wave 
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Where Qh is total power dissipation density 

relPoavx,y,z are the time average power flow of relative fields

Z0_const is the  scaling factor 

Mie solution to Maxwells’s equations: Implementation in COMSOL

• Mie Solution to Maxwell’s wave equation to calculate the 
extinction efficiency. (for particles d<< λ)

 Absorption cross section Cabs =
𝑊𝑎𝑏𝑠

𝐼𝑖
1*

 Scattering cross section Csca = 
𝑊𝑠𝑐𝑎

𝐼𝑖
2*

Wabs, Wsca are energy rates absorped and scattered by particle and Ii is    
energy flux of the incident wave.

Cext
= Cabs + Cabs

Qext = 
𝐶𝑒𝑥𝑡

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑟𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
3*

*Bohren and Huffman, Absorption and scattering of light by small particles, 1983 Wiley

DOI: 10.1002/9783527618156
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Ag 
NP

𝐶𝑎𝑏𝑠 = 
𝑒𝑤𝑓𝑑. 𝑄ℎ
𝐸20

2 ∗ 𝑍0_𝑐𝑜𝑛𝑠𝑡

𝐶𝑠𝑐𝑎 = 
(𝑛𝑥∗ 𝑒𝑤𝑓𝑑. 𝑟𝑒𝑙𝑃𝑜𝑎𝑣𝑥 +𝑛𝑦 ∗ 𝑒𝑤𝑓𝑑. 𝑟𝑒𝑙𝑃𝑜𝑎𝑣𝑦 + 𝑛𝑧 ∗ 𝑒𝑤𝑓𝑑. 𝑟𝑒𝑙𝑃𝑜𝑎𝑣𝑧)

𝐸20
2 ∗ 𝑍0_𝑐𝑜𝑛𝑠𝑡

(volume integral over the nanoparticle)

E0

(Surface integral over the nanoparticle)
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Modeling of Ag nanoparticle

 Ag silver nanoparticles exhibit high near field enhancement

 Prone to oxidation forming a diffuse Ag2O layer effecting the near field 
enhancement significantly.

 Not suitable for applications over long period of time or oxidative 
conditions. 

λInc = 355 nm
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E-Field enhancement contour of Ag nanoparticle 
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E-Field enhancement contour of Ag@Ag2O nanoparticle 

Silver colloidal nanoparticles 
stability test in air
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Ultrastable Ag nanoparticles:

 Encapsulation of Ag NPs with ultrathin protective polymer shell using LbL method. 

4 layers 
Ag/(PAH/PAA)2 

shell 1.4 nm

8 layers 
Ag/(PAH/PAA)4

Shell 2.4 nm

Bare Ag  nanoparticle 
dia~18nm

 Effect of polymer shell on the 
field enhancement of core-
shell nanoparticles.

polymer shell thickness (nm)
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Validation of models:

 Parametric sweep of incident wavelength to generate extincion plots    
(Mie solution implementation in COMSOL in water and npolymershell = 1.48

 Experimental absorption spectra compared with COMSOL model and Mie 
analytical solution using Bohren and Huffman’s BHCOAT (implemented in 
MATLAB) for coated nanoparticles. Data from J&C – Jhonson and Christy
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Ultrastable Ag plasmonic nanoarrays for multi-domain applications:

 Ag nanoparticle arrays generate hot spots 
 SERS : EF4 ~ 108-1011

 Engineering of Nano arrays based on the feedback from E-field simulations.
 Mesh convergence study for core-shell nanoparticle dimers

Mesh Density Number of Elements Computation time [s] Max point of (Norm. E-field)2

Normal 10374 9 3.13E+05

Fine 16588 11 4.64E+05

Finer 42048 24 4.21E+05

Extra fine 135833 85 3.50E+05

Extremely fine 647861 609 3.45E+05
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Ag plasmon enhanced TiO2 gas phase photocatalysis

 Application of silver nanoparticles for long-term stable plasmon
enhanced gas phase photocatalysis.

 Acetaldehyde as a model pollutant in gas phase photocatalysis

 FEM numerical simulations to corroborate experimental 
evidence to identify the major mechanism responsible for 
plasmonic enhancement.
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*Ramesh Asapu et al. Applied Catalysis B: Environmental, 200 (2017), 31-38
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Ag plasmon enhanced TiO2 photocatalysis

 Ag@polymer core@shell nanoparticles to study near-field / 
charge transfer

 Insulating polymer spacer layer rules out charge transfer 

 So how distant the near field enhancement is helpful! 

 FEM simulations  provide an estimation  feedback for 
experimental synthesis 
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Conclusion:

 FEM simulations can provide crucial insights: from synthesis, design and application perspective

 Study the effect of medium and design of nanoparticle plasmonic system for wide domain of  applications

 Vital mechanistic tool : plasmon enhanced photocatalysis and hotspot applications
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Thanks for your attention


