

FEM And Near-field Simulations: A Vital Mechanistic Tool for Studying Silver-based Plasmonic Systems

Ramesh Asapu¹, Sammy Verbruggen^{1,2}, Nathalie Claes³, Sara Bals³, Siegfried Denys¹ and Silvia Leanerts¹

Department of Bioscience Engineering, DuEL, University of Antwerp, Belgium

²Centre for Surface Chemistry and Catalysis, COK, KU Leuven, Belgium

³Department of Physics, EMAT, University of Antwerp, Belgium

Silver Plasmonic Systems: What and Where?

Surface Plasmon Resonance:

- Collective oscillation of conduction electrons at the dielectric-metal interface of a nanoparticle stimulated by incident light of matching wavelength.
- Highest near field enhancement by silver among the plasmonic noble metals like Au, Ag, Pt, Cu etc.
- Size tuneable plasmonic properties FEM vital tool for analysis

X Z

Time domain simulation of Ag NP (~20 nm) in air, λ_{inc} = 355 nm

Applications:

- Biophotonics
 - Sensing, Imaging and Therapeutics
- SERS
 - Identification of chemical species
- Plasmon enhanced semiconductor photocatalysis – TiO₂ systems.

^{*}Darya Radziuk et al. Phys. Chem. Chem. Phys., 2015, 17, 21072

Modeling of plasmonic nanoparticles in COMSOL

- COMSOL Wave Optics physics in wavelength domain study.
- Solution to Maxwell's electromagnetic wave equation:

$$\nabla \times \frac{1}{\mu_{\rm r}} (\nabla \times E) - K_0^2 (E_{\rm r} - \frac{j \sigma}{\omega E_0}) E = 0$$

where E – scattered electric field

K₀ - wavenumber in free space

 μ_r - relative permeability of medium

 \mathcal{E}_{r} – permittivity of medium

- PML layers to truncate the domain and avoid internal reflections
- Linear polarized plane wave

Mie solution to Maxwells's equations: Implementation in COMSOL

• Mie Solution to Maxwell's wave equation to calculate the extinction efficiency. (for particles $d << \lambda$)

• Absorption cross section
$$C_{abs} = \frac{W_{abs}}{I_i}$$
 1*

• Scattering cross section
$$C_{sca} = \frac{W_{sca}}{I_i}$$
 2*

 $W_{abs'}$ W_{sca} are energy rates absorped and scattered by particle and I_i is energy flux of the incident wave.

$$C_{\text{ext}} = C_{\text{abs}} + C_{\text{abs}}$$

$$Q_{\text{ext}} = \frac{C_{ext}}{geometric\ crss\ section\ of\ particle}$$

*Bohren and Huffman, Absorption and scattering of light by small particles, 1983 Wiley DOI: 10.1002/9783527618156

$$C_{abs} = \iiint \frac{ewfd. Q_h}{\frac{E^2_0}{2 * Z0_const}}$$
 (volume integral over the nanoparticle)

$$C_{sca} = \iint \frac{(n_x * ewfd.relPoav_x + n_y * ewfd.relPoav_y + n_z * ewfd.relPoav_z)}{\frac{E^2_0}{2 * Z0_const}}$$

(Surface integral over the nanoparticle)

Where Q_h is total power dissipation density relPoav_{x,y,z} are the time average power flow of relative fields Z0_const is the scaling factor

Modeling of Ag nanoparticle

- > Ag silver nanoparticles exhibit high near field enhancement
- ➤ Prone to oxidation forming a diffuse Ag₂O layer effecting the near field enhancement significantly.
- ➤ Not suitable for applications over long period of time or oxidative conditions.

Ultrastable Ag nanoparticles:

> Encapsulation of Ag NPs with ultrathin protective polymer shell using LbL method.

➤ Effect of polymer shell on the field enhancement of coreshell nanoparticles.

TEM Characterization

Validation of models:

- Parametric sweep of incident wavelength to generate extincion plots (Mie solution implementation in COMSOL in water and $n_{polymershell} = 1.48$
- Experimental absorption spectra compared with COMSOL model and Mie analytical solution using Bohren and Huffman's BHCOAT (implemented in MATLAB) for coated nanoparticles. Data from J&C Jhonson and Christy

Ultrastable Ag plasmonic nanoarrays for multi-domain applications:

- ➤ Ag nanoparticle arrays generate hot spots
 - \gt SERS: EF⁴ ~ 10⁸-10¹¹

- > Engineering of Nano arrays based on the feedback from E-field simulations.
 - > Mesh convergence study for core-shell nanoparticle dimers

Mesh Density	Number of Elements	Computation time [s]	Max point of (Norm. E-field) ²
Normal	10374	9	3.13E+05
Fine	16588	11	4.64E+05
Finer	42048	24	4.21E+05
Extra fine	135833	85	3.50E+05
Extremely fine	647861	609	3.45E+05

Ag plasmon enhanced TiO₂ gas phase photocatalysis

- Application of silver nanoparticles for long-term stable plasmon enhanced gas phase photocatalysis.
- Acetaldehyde as a model pollutant in gas phase photocatalysis
- FEM numerical simulations to corroborate experimental evidence to identify the major mechanism responsible for plasmonic enhancement.

Long term stability study of Ag-TiO₂ photocatalytic system using 4 layered Ag core-shell nanoparticles

*Ramesh Asapu et al. Applied Catalysis B: Environmental, 200 (2017), 31-38

Ag plasmon enhanced TiO₂ photocatalysis

- Ag@polymer core@shell nanoparticles to study near-field / charge transfer
- Insulating polymer spacer layer rules out charge transfer
- So how distant the near field enhancement is helpful!
 - ➤ FEM simulations provide an estimation → feedback for experimental synthesis

Influence of spacer layer between Ag plasmon and TiO₂ nanoparticles on the enhancement

Conclusion:

- FEM simulations can provide crucial insights: from synthesis, design and application perspective
- > Study the effect of medium and design of nanoparticle plasmonic system for wide domain of applications

Vital mechanistic tool: plasmon enhanced photocatalysis and hotspot applications

