Modeling Bipolar Electrochemistry in Order to create a Basis for Computational Tribology Experiments

Hörmann, Johannes (何约翰) Meng, Yonggang (孟永钢) 清华大学, 机械工程系, 摩擦学国家重点实验室, 北京100084

引言: In the field of boundary lubrication, surfactant adsorption plays an important role. Recently, several experiments [1][2] focused on controlling adsorption behavior electrodynamically. In this context, Zhang [2] investigated the adsorption behavior of SDS (sodium dodecyl sulfate) on steel BPE (bipolar electrode). Here we aim on establishing a virtual model in order to reproduce Zhang's experimental findings and furthermore to predict or validate related experiments. The first step is a complete model of BPE, explicitly including the full diffuse double layer (DDL) structure.

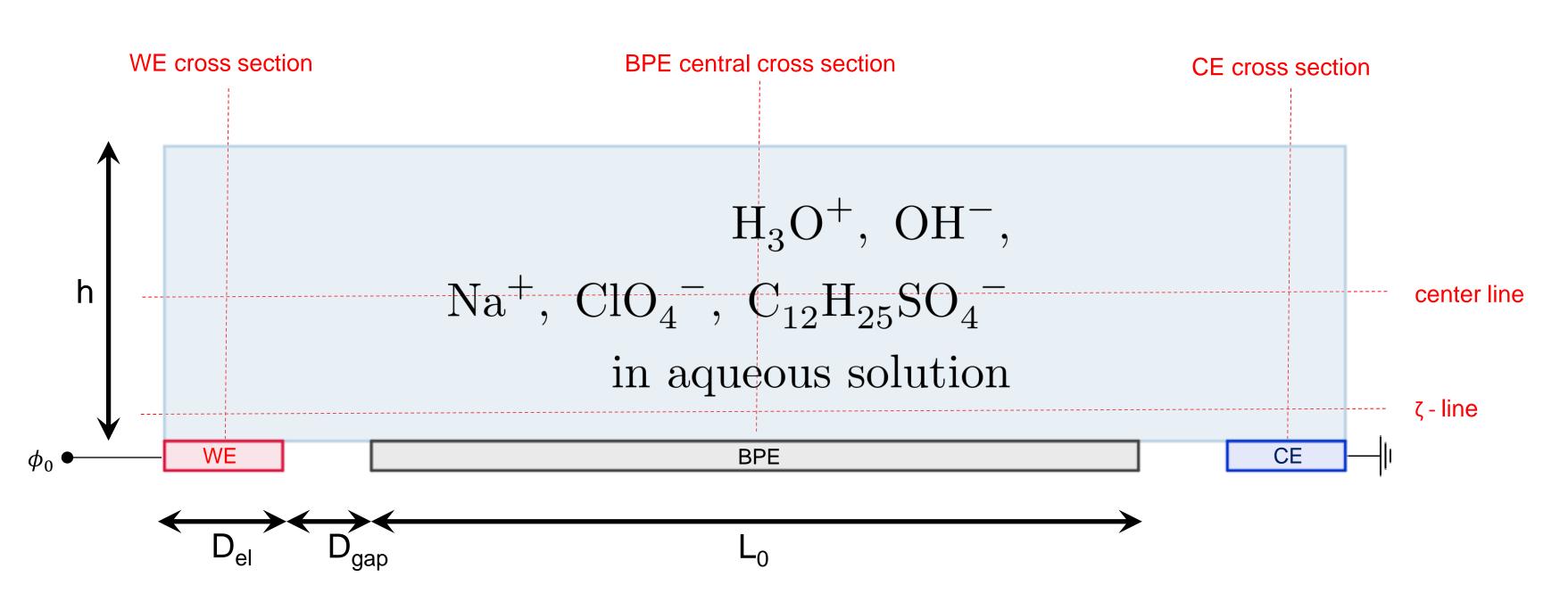


图 1. Model of BPE cell

计算方法: Our 2d model electrochemical cell consists of working electrode WE, counter electrode CE, BPE and electrolyte. Inspired by Bazant [3], the full Poisson-Nernst-Planck (PNP) equation system is solved within the electrolyte domain

$$\mathbf{N_i} = -D_i \nabla c_i - u_i z_i F c_i \nabla \phi \quad \text{(Nernst-Planck)}$$

$$\nabla \cdot (-\epsilon \nabla \phi) = \rho \quad \text{(Poisson)}$$

with conservation law $\nabla \cdot \mathbf{N_i} = 0$ and physics-coupling through charge density $\rho = F \sum z_i c_i$.

Ion species H_3O^+ , OH^- , Na^+ , ClO_4^- and $C_{12}H_{15}SO_4^-$ in aqueous solution correspond to Zhang's setup.

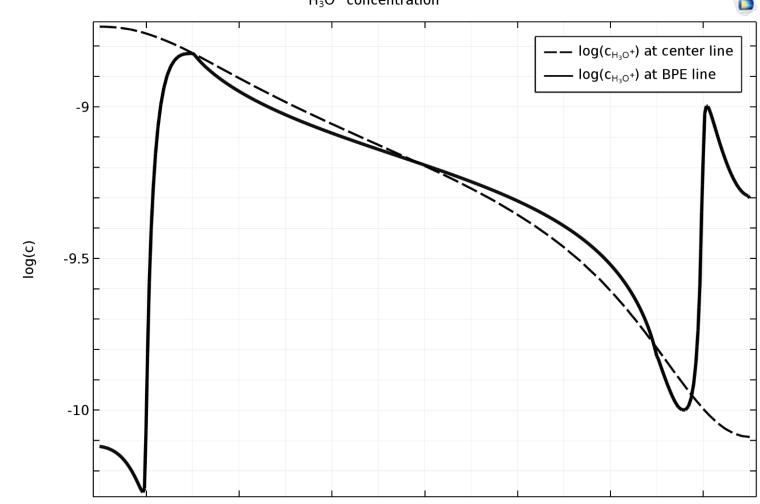
Three governing surface reactions at the electrodes, namely the dissolution of iron and electrolysis of water, state the boundary conditions:

$$Fe \longrightarrow Fe^{2+} + 2e^{-} \qquad \text{anodic}$$

$$6 \text{ H}_2\text{O} \longrightarrow \text{O}_2 + 4 \text{ H}_3\text{O}^+ + 4e^{-} \qquad \text{anodic}$$

$$\text{H}_2\text{O} + 2e^{-} \longrightarrow \text{H}_2 + 2 \text{OH}^{-} \qquad \text{cathodic}$$

Those half-reactions lead to species flux at WE, BPE and CE governed by electrochemical kinetics.


Each reaction thus imposes boundary conditions given by the following flux expression related Butler-Volmer equation,

 $N=K_a\cdot c_{\mathrm{R}}\cdot e^{rac{Flpha_az\eta}{RT}}-K_c\cdot c_{\mathrm{Ox}}\cdot e^{-rac{Flpha_cz\eta}{RT}}$ where c_{R} and c_{Ox} are the local surface concentrations of reductant and oxidant. The potential difference between solid electrode phase and liquid electrolyte phase is expressed as the overpotential $\eta=\phi_s-\phi_l$, here the potential drop across the DDL stretching out to the ζ -plane at Debye length λ_{D} . Methods to determine the potential at isolated BPE stem from [4].

结果: At the current stage, a qualitative steady state model with pseudo parameters including only one half-reaction has been solved.

name	value	unit
L_0	10	nm
D _{el} , D _{gap}	1	nm
λ_{D}	0.34	nm
h	10 * λ _D	nm
ϕ_0	0.1	V
C _{H30+} ∞	1E-4	mol/m ³

表 1. parameters

2. log H₃O⁺ concentration

Flux at interfaces

Flux of H₃O⁺ at working electrode (inward flux)

Flux of H₃O⁺ at BPE (inward > 0, outward < 0)

Flux of H₃O⁺ at BPE (inward > 0, outward < 0)

图 3. Flux at electrodes

结论: Convergence is difficult to be guaranteed for this highly non-linear PNP system. Meshrelated deviations are likely to occur. In case those issues can be solved, present results promise the realization of [2] and extension to other problems.

参考文献:

1.He, S.; Meng, Y. & Tian, Y.: Correlation between adsorption/desorption of surfactant and change in friction of stainless steel in aqueous solutions under different electrode potentials. Tribology letters, 41, 485-494 (2011)

2.Yang, X.; Meng, Y. & Tian, Y.: Potential-controlled boundary lubrication of stainless steels in non-aqueous sodium dodecyl sulfate solutions. Tribology Letters, 53, 17-26 (2014) 3.Bazant, M. Z.; Chu, K. T. & Bayly, B.: Current-voltage relations for electrochemical thin films. SIAM journal on applied mathematics, 65, 1463-1484 (2005)

4.Duval, J.; Kleijn, J. M. & van Leeuwen, H. P.: Bipolar electrode behaviour of the aluminium surface in a lateral electric field. Journal of Electroanalytical Chemistry, 505, 1-11 (2001)