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5] 3 : In the field of boundary lubrication,
surfactant adsorption plays an important role.
Recently, several experiments [1|[2] focused on
controlling adsorption behavior electrodynamically.
In this context, Zhang [2| investigated the
adsorption behavior of SDS (sodium dodecyl sulfate)
on steel BPE (bipolar electrode). Here we aim on
establishing a virtual model in order to reproduce
Zhang’'s experimental findings and furthermore to
predict or validate related experiments. The first
step is a complete model of BPE, explicitly including
the full diffuse double layer (DDL) structure.
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B 1. Model of BPE cell

1+ 3 7 % : Our 2d model electrochemical cell
consists of working electrode WE, counter electrode

CE, BPE and electrolyte. Inspired by Bazant [3], the
full Poisson-Nernst-Planck (PNP) equation system is

solved within the electrolyte domain
N; = —-D;Ve;, —u;z; Fe;Ve  (Nernst-Planck)
V- (—eV¢)=p (Poisson)
with conservationlaw V-N;=0 and physics-

coupling through charge density p = F »_zci
[on species H,0™, OH", Na*, ClO, and C,,H;:S0, in
aqueous solution correspond to Zhang's setup.
Three governing surface reactions at the

electrodes; namely the dissolution of iron and
electrolysis of water, state the boundary conditions:

Fe s Fe®T £ 9e™ anodic
6 H,O » O, +4H,0" +4e” anodic
H,O +2e” >»H, +20H™ cathodic

Those half-reactions lead to species flux at WE,
BPE and CE governed by electrochemical kinetics.
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Each reaction thus imposes boundary
conditions given by the following flux
expression related Butler-Volmer equation,
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where ¢, and c,, are the local surface
concentrations of reductant and oxidant. The

potential difference between solid electrode

phase and liquid electrolyte phase is
expressed as the overpotential
N = Qs — P , here the potential drop

across the DDL stretching out to the ¢-plane at
Debye length A,. Methods to determine the

potential at isolated BPE stem from [4].

25X : At the current stage, a qualitative
steady state model with pseudo parameters
including only one half-reaction has been
solved. N ]
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L, 10 nm

el 1 nm

gap
A\
Ao 0.34 nm

B 2. log H,O* concentration

h  [10*A;| nm

O 0.1 V

% 1. parameters

B 3. Fluxatelectrodes
¢+ : Convergence is difficult to be guaranteed
for this highly non-linear PNP system. Mesh-
related deviations are likely to occur. In case
those issues can be solved, present results
promise the realization of [2| and extension to
other problems.
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