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Introduction
Grounding (or electrode) systems

Different aspects, according to the function
• AC: “system reference”, low usage (balanced 

system)
• Transient (e.g. lightning, short circuit, surge 

arrester): high power, short time (ms to s)
• DC (monopolar): high power and long time

• High energy  high current density  electroosmosis and 
soil drying  lost of conductivity/ contact

• Self corrosion or in nearby structures
• Transformer core saturation through neutral current

• DC (bipolar): contingency only (hours to days/ 
year)
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Introduction
HVDC Link Design

• Typical designs: (a) monopolar, (b) bipolar 
(Kimbark, 1971)
• Bipolar lines can operate in monopolar mode, in case of

contingency

electrode
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Introduction
Project considerations

• “A return path via ground electrodes will normally have a 
considerably smaller resistance than any reasonable metallic 
conductor return” (Cigré WG, 1998)

• Distances between converter stations to electrodes range 
from 8 to 85 km, because:
• Cost/ permission of the site,
• Distance to metallic objects (the converter station, pipelines, cables, 

grounding networks, other AC stations, distribution transformers)
• Proper geology (resistivity, moisture, thermal conductivity, water 

depth etc)
• Two groups of problems with different aspects:

• Distant problems, far from the electrode: conducted current in 
metallic structures  deep soil layers;

• Local problems: current density, touch and step potentials, contact 
resistance, heating and drying  electrode material, geometry, 
shallow layer;
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Objectives

Apply the Finite Element Method in some 
aspects of HVDC electrode design:

• Ground resistivity estimation
• Simulation of the Wenner Method in irregular layers

• Electrode performance
• Multiphysics simulation (electrical + thermal) of some 

electrode designs
– Horizontal (Ring)
– Vertical (Rods)

• Effects in metallic structures
• Considerations for future research
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Soil resistivity measurement

• The Wenner Method (1915) is very usual and reliable for 
shallow measurements (equal to distance a);

• Other know method is the Schlumberger, basically another 
arrangement for the electrodes,

• For deep measurements, magnetotelluric methods could be 
employed, among others.

𝜌𝜌𝑒𝑒 =
4 𝜋𝜋 𝑎𝑎 𝑅𝑅𝑤𝑤

1 + 2𝑎𝑎
√𝑎𝑎2 + 4𝑏𝑏2 −

𝑎𝑎
√𝑎𝑎2 + 𝑏𝑏2

≅ 2 𝜋𝜋 𝑎𝑎 𝑅𝑅𝑤𝑤  
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Soil resistivity measurement

• The soil are assumed to be stratified, composed by layers of distinctive 
materials;

• The Wenner measures the relation V/I, giving resistance (for a certain 
frequency);

• The resistivity is an approximate relation by volume traversed by the 
electric current  depth approx. to distance a;

• The resistivity are greatly influenced by moisture, salinity and temperature, 
e.g. from ~2000 Ωm @ -10°C to ~60 Ωm @ 25°C (ABNT, 2012)

• Other relevant quantities are permittivity, thermal conductivity and heat 
capacity;
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Soil resistivity measurement

Images from http://www.shopaemc.com/content/aemc-understanding-soil-resistivity-testing.html

Table from Loke (2001)
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Case 1: Validation of Wenner Method

•Meshing
• Subdomains near the electrodes, 

for proper meshing;
• Initially used ”copy domain” in 

the wenner probes, but default 
“free tetrahedral” works fine;

• Infinite domain (hemispherical
domain 250 m radius with
boundary layer 20 m thick) 

•Study configuration
• Probe depth 30 cm;
• Parametric sweep of distance a;
• Electrical circuit physics emulates

the earth meter (current source 
+ resistor as the voltmeter);

• Terminals at the top of each rod;
• “ideal ground” at the infinite

domain;
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Case 1: Validation of Wenner Method

Constant soil, 100 Ωm

Proximity between electrodes (recommended by ABNT 2012 as probe depth < a/10)



Centro de Pesquisas de Energia Elétrica - CEPEL

Case 1: Validation of Wenner Method

Upper layer 100 Ωm, lower layer 1000 Ωm, depth 10 m
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Case 1: Validation of Wenner Method

Upper layer 1000 Ωm, lower layer 100 Ωm, depth 10 m
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Case 1: Validation of Wenner Method
Effect of an irregular soil
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Case 1: Validation of Wenner Method
Effect of an irregular soil

Soil 100 Ωm, rock 1e6 Ωm
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Case 1: Validation of Wenner Method
Effect of an irregular soil

Soil 1000 Ωm, rock 1e6 Ωm



Centro de Pesquisas de Energia Elétrica - CEPEL

Case 2: Comparison of Electrode
Designs

• Some theoretical configurations are presented:
• Land electrode

– Horizontal (ring, toroidal)
– Vertical (rod)

• Considerations are made with typical values, for a real case 
study consider:
• Measure on site,
• Statistical variations,
• Dependency/ correlation between parameters.

• Expected results:
• Current density;
• Ground potential rise;
• Maximum ground electric field;
• Temperature profile;
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Case 2: Comparison of Electrode
Designs

• Parameters considered in the case:

Soil resistivity 50 Ωm

Thermal conductivity 1.3 W/°C m

Heat capacity 1 MJ/m³ °C

Maximum natural 
soil temperature

28°C

Maximum electrode
temperature

96°C

Current distributor
(electrode core)

Metallic rod

Electrode body Coke

Coke resistivity 0.2 Ωm

Design current @ 
maximum time

2625 A @ 8-10 d/ yr

Equivalente 
resistance

0.267 Ω

Maximum gradient 26.2 V/m

Electrode diameter 868 m

Electrode depth 3.86 m

Core diameter 45 mm

Coke cross section Square 0.53 x 0.53 m

Soil profile

•First layer 400 Ωm

•Second layer 50 Ωm @ 400 m

•Third layer 14000 Ωm @ 15 km

•Fourth layer 800 Ωm @ 30 km

From EPRI (1981) – sample case From CIGRÉ(1998) – Foz do Iguaçu Station
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Case 2: Comparison of Electrode
Designs

Extreme 
dimensional 
differences

Proper
meshing at
surface
(predefined
distribution
type, 
element ratio
> 50)
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Case 2: Comparison of Electrode
Designs

Metallic core

Coke

Fillet (represent practical aspect from
construction & avoid singularities)
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Case 2: Comparison of Electrode
Designs

Theoretical temperature rise in electrode core in a time span of 3 weeks
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Case 2: Comparison of Electrode
Designs
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Case 2: Comparison of Electrode
Designs
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Case 2: Comparison of Electrode
Designs

Surface plot, revolved, potentials
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Case 2: Comparison of Electrode
Designs

Profile at ground level
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Case 2: Comparison of Electrode
Designs

Profile at ground level
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Case 2: Comparison of Electrode
Designs

More precaution are needed in the ground surface meshing

Profile at ground level – detail near the electrode
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Case 2: Comparison of Electrode
Designs

What about vertical 
electrodes?
• Good solution when the

land cost is very high AND 
the deep layers are 
favorable (in thermal and
electrical aspects);

• A continuous electrode
causes a bad current
distribution  segment the
electrode core;

• Array of vertical electrodes
 3D simulation if distance
between them are similar 
with the length.
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Case 2: Comparison of Electrode
Designs
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Case 2: Comparison of Electrode
Designs

Investigation of the
“hot spot”
• Jcore >> Jcoke  manual 

color range;
• Sometimes, singularity

caused by bad
meshing  fillet it;

• Check parameters
consistency.
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Case 3: induced current in AC 
systems

• Buried metallic structure
(insulated or in direct contact)
• Minimum practical distance of 8-10 

km (CIGRÉ WG, 1998);
• Worse condition is when the HVDC 

electrode operates as a cathode (for 
an anode, the impact is reduced by
~5 times);

• Using FEM is possible to model a 
practical installation
• The connected grounding systems 

modify the ground potentials;
• The result is as good as the involved

parameters (e.g. do not matter in 
duct details if the resistivity are 
roughly estimated).

Figure from Zeng (2011)
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Case 3: induced current in AC 
systems

-2000 A

1,5 Ω

10 km

Hemisphere equivalent to 
the electrode ground
resistance same GPR 
at far distances
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Case 3: induced current in AC 
systems
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Case 3: induced current in AC 
systems

• Electrode resistance: 
0.5822 Ω

• Induced current in AC 
system: 25.4149 A

• Results changes with:
• Distance from the

electrode,
• Distance between AC 

stations,
• Orientation (worst

condition is aligned with
the field),

• Transformers
connection.

• Results don’t changes
with:
• Electrode topology,
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Case 3: induced current in AC 
systems

Height expression in surface + contour plot, ground potentials, electrode touch potential -1164 V
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Conclusions

• FEM can represent several aspects in HVDC electrode design,
• COMSOL provides great resources, but caution are recommended:

• Saturation in transformer core by DC current  Magnetic simulation are tricky (e.g. 
investigate sharp corners with high magnetic field & nonlinear materials)

• Don’t try simulate all aspects at once:
– Begin simple, add complexity gradually;
– Divide to conquer (using equivalent electrode to far field effects);
– Mesh size  good enough for your problem, nothing more;

• Avoid corners  fillet, layered sphere for open domains;
• Caution when filtering the results:

– Have a look with “no refinement” resolution,
• Secure if parameters are good:

– Infinite domains (are enough space?)  huge domains + coarse mesh;
– Mesh discretization (like magnetic simulation);
– Solver, time step;

• Ideal ground (zero voltage reference) × real ground:
– Look for the ∆V, not V;
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Future research

Some possibilities for further research 
regarding HVDC electrodes:

• Study of other measurement techniques 
(magnetotelluric, ground penetrating radar – GPR) in 
inhomogeneous soil, frequency model (RF module);

• Interaction between electroosmosis and corrosion 
(Batteries & Fuels Cells module, Corrosion module);

• Influence of other geological aspects (Subsurface Flow 
module);

• Hydrodynamics in sea or shore electrodes (CFD 
Module, Electrochemistry module, Flow in porous 
media).
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Thank you.

Contact:
carloska@cepel.br
+55-21-2598-6250
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