Development of COMSOL-based applications for heavy oil reservoir modelling

S. Cambon⁽¹⁾ – I. Bogdanov⁽¹⁾ – A. Godard⁽²⁾
October 15th, 2015

- (1) Open & Experimental Centre for Heavy Oil, University of Pau, Pau, France
- (2) Jean Féger's Scientific & Technical Centre, TOTAL S.A., Pau, France

Industrial challenge - Heavy oil reserves

Source: TOTAL website www.total.com

Huge potential

- around 500 billion barrels
- almost double Saudi Arabia's reserves (greatest volume of conventional oil)

Growing energy needs

 extend the world's energy reserves by 15 years

Significant challenges

 only 3% are produced or under active development

Oil sands and Bitumen (our interest)

- specific gravity from 7 to 9 °API
- viscosity of up to 10.000 cP

This unconventional oil is becoming essential

... but ...

so viscous that they are non-mobile

Existing recovery technologies

Source: TOTAL website www.total.com

In-situ cold production

 for low mobility, a diluent is injected and production is made by depletion

Open-pit mining

 effective for non-mobile oil but feasible only if depth is lower than 100 meters

Thermal recovery (our interest)

 Requires an input of energy to reduce the viscosity and so increase mobility (most widely used: SAGD, CSS)

SAGD: Steam Assisted Gravity Drainage

CSS: Cyclic Stream Stimulation

For deep non-mobile reserves, only thermal recovery can be applied

highly increases the production cost

Thermal enhanced oil recovery (EOR)

Oil sands and Bitumen

°API<10 and viscosity up

to 10.000 cP

The state of the s

Mobile oil

°API>20 and viscosity
lower than 100 cP

- ✓ Can be combined with conventional recovery techniques
- ✓ Production is therefore feasible but as complex as costly
- × Energy efficiency becomes a key factor

Electromagnetic heating technology

Example of studied pattern

- Transmission lines
- EM. antennas
- Production well

Objectives

- (1) Limit transmission lines loss
- (2) In-situ generate heating power
- (3) Create and extend steam chamber

- √ Water vaporization open a way to heat deeper in the reservoir
- √ Works at low reservoir pressure (contrary to SAGD)
- × Vaporization depends on the working pressure

PROS & CONTRAS

❖ PROS

- Avoids injectivity problem (EHO deposits)
- Removes heat loss from well (cf. SAGD)
- In-situ heats a reservoir and can generate steam
- Reduces environmental impact (opposed to mining)

CONTRAS

- Exhibits energy loss in transmission line
- Production efficiency and economics to be improved
- Technology is <u>still not mature</u>

Further research necessary to improve both energy efficiency and recovery factor

✓ Require an accurate and efficient simulator

Several kind of physics:

- Multiphase flow in porous media
- Phase transition
- Heat transfer
- Electromagnetic field

How to solve that problem?

Several kind of physics:

- Multiphase flow in porous media
- Phase transition
- Heat transfer
- Electromagnetic field

How to solve that problem?

First idea using only COMSOL Multiphysics?

- ✓ Accurate numerical methods
- ✓ Take into account all the physics
- ✓ Interface is easy to handle
- × Too consuming at reservoir scale
- × Not a reservoir simulator!

Several kind of physics:

- Multiphase flow in porous media
- Phase transition
- Heat transfer
- Electromagnetic field

How to solve that problem?

First idea using only COMSOL Multiphysics?

- ✓ Accurate numerical methods
- ✓ Take into account all the physics
- ✓ Interface is easy to handle
- × Too consuming at reservoir scale
- × Not a reservoir simulator!

Second idea

using only reservoir simulator?

- ✓ More than 50 years of research
- ✓ Efficient at reservoir scale
- ✓ Suited to complex fluid composition
- × Not adapted to EM. field simulation

Several kind of physics:

- Multiphase flow in porous media
- Phase transition
- Heat transfer
- Electromagnetic field

How to solve that problem?

EMIR – **ElectroMagnetism Interacting with Reservoir**

EMIR - Loose coupling approach

Coupling foundations

- 1. Reservoir simulator only requires a global heating energy estimation P_w in J/day at each coupling time and for each reservoir grid blocks
- 2. Time-harmonic electromagnetic propagation

Restrictions (example in 2D)

The reservoir part of the electromagnetic mesh must be a sub-mesh of the reservoir grid

$$P_{w}(M) = \sum_{\substack{e \in E_{h} \\ e \cap M \neq \emptyset}} \int_{e \cap M} Q(x, y, z) de$$

Reservoir grid (CMG-STARS)

Electromagnetic mesh (COMSOL)

× Not allowed (too complex)

✓ Naturally usable

EMIR - Algorithm

EMIR – Example "Dipole antenna"

EM model - performance

Simulation period: almost 4 years & Input power: 120 kW

- Around 950 coupling time-steps (step average 1.5 days)
- COMSOL requires almost 4 minutes to solve each coupling time-step
 - Solver: PARDISO (shared memory parallelization)
 - Number of threads: 16 (one cluster node fully used)
 - Reservoir grid blocks: almost 350 000
- > Required days of computation for 3D models

EM model - results

Conclusions

EMIR is an innovative tool for petroleum industries

- ✓ Prove its operational applicability to 2D and 3D problems
- ✓ Extend reservoir simulation capabilities to direct EM applications

COMSOL successfully provides a way to couple powerful simulators together

- ✓ Java API is really easy to handle
- ✓ If needed, adding new dedicated petroleum (or not) simulator is still possible

Future works

- ☐ Evaluate the distributed memory solver "MUMPS" on several cluster nodes
- Couple the RF module with the AC/DC one to model an antenna tuner
- ☐ Use COMSOL "If+End If" feature to optimize the computational domain along time

Acknowledgment

TOTAL S. A is gratefully acknowledged for sponsoring the research work of the Open & Experimental Centre for Heavy Oil (CHLOE)

Thank you for your attention