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Abstract: We present computer simulation results 

for PEM fuel cells using COMSOL Multiphysics. 

We have developed novel PDE equations at NPL 

from first principles and these are more realistic than 

models typically used in literature. The theory 

includes Maxwell Stephan and Nernst Planck 

equations for the diffusion and electrochemistry as 

well as equations governing electrostatic and 

stress/strain effects. The whole system is a highly 

coupled multiphysics and non-linear problem with 

particular complexity arising from the 

electrochemical source terms which include an 

agglomerate model. We present these and their 

derivation equations in this talk and show how we 

used COMSOL to solve them using two techniques: 

combining built in modules and using equation 

based modelling to enter equations explicitly using 

the "coefficient mode". The latter mode allows us 

more control over exactly what equations are solved 

and will help us to generalise the model to include 

Navier Stokes equations for the stress/strain 

behaviour. In this paper we compare these different 

methods of using COMSOL and show preliminary 

results from our simulations. 

Keywords: Fuel cell, finite element, hydrogen, 

proton, exchange, gas, diffusion, equation 

1. Introduction 

Fuel cell technology promises to be an 

environmentally friendly power source with broad 

applications in many industries including 

transportation as well as portable and stationary 

power generation.  Manufacturing and operating 

costs can be reduced by optimising the efficiency of 

fuel cells through detailed analysis of complex 

electrochemical and mass transport phenomena that 

occur within the cells. 

There are two principal types of fuel cells: the first 

is known as the proton exchange membrane fuel cell 

(PEMFC), which has received the most attention for 

modelling purposes in the literature.  The second is 

known as a solid oxide fuel cell (SOFC), which 

operates with different chemical systems, and 

different electrochemical reactions at the electrodes.  

This paper will focus on developing models for 

PEMFCs. 

Figure 1 shows the channels within an interdigitated 

fuel cell (the type we will discuss in this paper: the 

alternative is a serpentine system where all the 

channels line up). Fuel (hydrogen, oxygen) enters 

the system through the inlet and waste products 

(water, CO2) leave through the outlet: the graphite 

regions, shown in grey, are impermeable. To cross 

from inlet to outlet, the chemical products must 

travel “into the page”, underneath the graphite 

barrier and up again to the plane of the page (see Fig 

1) which forces chemicals into contact resulting in 

reactions. 

 

Figure 1: Interdigitated fuel cell. 

Since it is impractical to model this entire system, 

we model a simple “representative volume element” 

(RVE) shown in the Figure 1. It is hoped that results 

calculated from the RVE will sufficiently reflect the 

whole cell’s behaviour. A blow-up of the RVE is 

shown in Fig 2 which has been extracted from Fig 1 

and rotated through 90 degrees. 
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Figure 2: Detail of fuel cell representative volume element. The inlet port for H2 and H2O is at the bottom-left and the inlet 

for O2, N2 and H2O is at the top-right. 

In Fig 2, we see that a concentration of hydrogen, 

water, oxygen and nitrogen is applied at the inlet 

ports and these propagate through to the outlet ports 

in lower concentrations. A pressure difference is 

also maintained between inlet and outlet ports (the 

latter being at atmospheric pressure). Furthermore, a 

different electrostatic potential is applied at each of 

the graphite electrodes giving a potential difference 

across the system. The major output of the 

simulation is the current predicted from the given 

voltage: running multiple simulations gives an I-V 

curve. 

Figure 3 shows a schematic diagram corresponding 

to Fig 2. The various symbols shown are the 

dependent variables that need to be model in space 

(fields) with the notation used. Notice that some 

dependent variables are only present in some 

domains, eg the electrostatic potential, 𝑉𝑒𝑙𝑒 , is 

present only in Domains 1, 2, 4 and 5, while the 

membrane potential, 𝑉𝑚𝑒𝑚 is only present in the 

central Domains 2-4. Thus, 𝑉𝑒𝑙𝑒 must be deactivated 

in region 3 etc. The corresponding physics is also 

only activated where needed, so that the electrostatic 

physics is only used in Domains 1, 2, 4, 5 etc. When 

modelling using COMSOL’s physics modules, we 

add the “conductive media” module only within 

those regions; when using equation based modelling 

we deactivate rows of the overall matrix 

accordingly. The “gas phase” (Fig 3) is essentially 

modelled using Maxwell-Stephan equations while 

the “solid phase” is modelled using Nernst-Planck, 

as will be shown. We will prefer to use mass 

fractions in the outer regions as these naturally occur 

in Maxwell-Stephan, while concentrations are used 

in the inner regions for convenience when using 

Nernst Planck. Naturally, constraints are added to 

ensure these quantities are mutually consistent. 

Notice how the system is “staggered” so the 

electrostatic potential, hydrogen mass-fraction etc in 

Domain 1 communicates with that in Domain 5 only 

indirectly via the membrane potentials, hydronium 

concentrations etc, in the inner regions. 
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Figure 3: Schematic diagram showing various species (with notation) that need to be modelled, referred to the phase, region 

and domain within the fuel cell. The (sub)domain numbers are those used in COMSOL. Here, “c” refers to concentration while 

“w” is mass-fraction. In our simulations we have p=1 so that the hydronium (H3O) ions are present but p > 1 could also be 

modelled. 

2. Theoretical model 

Considering now Maxwell-Stephan equations governing 

hydrogen and water at the anode, we have 
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where 1 , 2 2k H k H O    . Both mass (ω) and 

molar fractions (x) appear in this equation and both vary 

spatially across the simulation (for solution, either can be 

eliminated). In practice only one equation need be solved 

at the anode since mass fractions sum to unity as shown 

in (2). The pressure, p, is another dependent variable to 

solve for giving two remaining dependent variables at the 

anode: 𝜔𝐻 (or 𝑥𝐻) and p. The pressure can be deduced 

from Darcy’s law as 
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Where 𝜅 is the system porosity and 𝜂 is the viscosity 

(both spatially uniform). The F term relates to creates of 

momentum due to chemical reaction and will be 

discussed later. The velocity field in (1) is then recovered 

from 𝒖 = −𝜌𝜅∇𝑝/𝜂. The total density 𝜌 appearing in (1) 

and (3) is given by 
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where 𝑚𝐻 etc are the molar masses of the constituents. 

The diffusion constants, �̅�, are actually functions of 

concentrations: 
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where the �̂� expressions are constants. The chemical 

reaction term 𝑅𝐻 in (1) is given by 
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The meaning of these terms need not concern us greatly, 

they are all constants and given as simulation inputs 

except for the concentrations, c (which are trivial 

functions of the mass fractions) and 𝛽𝐻. This is given by, 

2
2 exp exp

2

ref ano ano

ano ano ano ox ano red ano
H agg ref

H H

i s r F F

F D c RT RT

   


    
      

    

  (5) 
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The remaining parameters are all constants and again 

need not concern us here (see [1] for a full description). 

The point to note is that 𝛽𝐻 is related to the difference in 

membrane and electrostatic voltage according to 

exponential functions and then the reaction rates are 

given by this 𝛽𝐻 via a further coth function in (4). Clearly 

the system is very non-linear with the strongest 

(exponential) non-linearity emerging due to the chemical 

reaction, right-hand-side term 𝑅𝐻. The complexity of this 

term arise because we assume reactions can occur only 

when catalyst particles, membrane material, conducting 

carbon particles and pores supplying the gas are in 

mutual contact, and with a film of liquid water, and this 

often occurs in agglomerate particles which form 

because of difficulties in dispersing the various types of 

material. E.g., the term 𝑟𝑎𝑛𝑜 in (5) refers to the radius of 

these reacting particles and 𝐷𝐻
𝑎𝑔𝑔

refers to how material 

diffuses within them. Introducing this agglomerate 

system makes our model more complex and realistic than 

other simulations reported in literature. 

On the cathode side, the Maxwell-Stephan equations 

have a similar form, but now we have 2 equations (plus 

the constraint that total mass fraction sums to 1): 
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where 1 , 2 2 , 3k O k H O k N      . The 

equations for 𝜌, 𝑅𝑂 , 𝑅𝐻2𝑂, 𝒖, �̅� are similar to those in (1) 

but rather more complex owing to 3 species rather than 

2. We refer the reader to [1] for full details. The 

dependent variables, which vary in space, are 

𝜔𝑂 , 𝜔𝐻2𝑂 , 𝑝. 

To complete the specification in the outer domains 

1,2,4,5, the Poisson equation is used to govern the 

electrostatic potential 

  0ele ele eleV Q     

Where sigma is the conductivity. 𝑄𝑒𝑙𝑒  is a term which 

creates charge according to the chemical reactions 

occurring. In fact 𝑄𝑒𝑙𝑒  is given by equations similar to (4) 

as is the F term, already seen in (3). Thus the right hand 

side terms of all PDEs in the model are roughly the same: 

an expression in terms of dependent variables with 

exponential dependence on those variables. All of this 

arises from the agglomerate model considered. Thus all 

PDEs are highly non-linear and the simulation is not 

guaranteed to converge in all cases. 

Lastly, consider the inner domains 2-4. The electrolyte 

membrane of the fuel cell is considered to be a mixture 

of four species.  The abundant solvent is the membrane 

polymer (usually NAFION) and three solute species are 

assumed to diffuse within the solvent.  They are the 

negative ions (k = 1) having concentration Mc , the 

positive ions (k = 2) having concentration HPOc  and the 

electrically neutral water molecules (k = 3) having 

concentration 2H Oc . The equations governing these are 

given by 

. k k
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, 

 k=1, 2, 3. 

Where, again, due to the agglomerate model, the 𝑆̅ 

functions have a similar form to the corresponding S-

functions in (4) giving non-linear source behaviour. 

3. COMSOL implementation using pre-defined 

modules 

COMSOL Multiphysics comes with a great many 

modules which can be added together to create complex 

multiphysics systems without the necessity to specify 

each equation by hand. The disadvantage is that we don’t 

have full control over what equations we wish to solve 

and could even end up solving a different set of equations 
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than we intended. Such a mistake might be hard to 

discover. 

In the model we used the following Comsol modules: 

 Conductive Media DC (Electrodes) 

 Darcy’s Law (Darcy) 

 Maxwell-Stephan Diffusion and Convection 

(ms) 

 Nernst-Planck (chnp) 

As indicated, some of these modules are only active in 

certain subdomains, see Fig 3. 

4. COMSOL implementation using the 

coefficient mode 

The equation-based modelling approach gives us full 

control over which equations we wish COMSOL to 

solve. Although the matrices in this section are complex, 

it should be noted that the greatest complexity in the 

current work is due to the agglomerate source terms in 

(4). These must be entered as COMSOL expressions 

however we model the system. As stated, we can either 

retain molar or mass fractions in the Maxwell-Stephan 

equations (eliminating the other one). Here we show the 

molar fraction approach as the equations are simpler. We 

first set write down the 8 dependent variables of the 

model in a vector u: 
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We wish to express the PDEs required in the coefficient 

form fc  u (we set the other COMSOL 

matrices, 𝛼, 𝛽, 𝛾, 𝑎 to zero).  By substitution, it is easy to 

check that the following c, f matrices give the correct set 

of equations: 
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where I is the 3x3 identity matrix. The numbers in 

brackets after each equation show which domains 

the component is active in. In other domains, the 

matrix component should be set to zero.  

The f-vector is given by 
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where again the numbers in brackets indicate the 

domains where the component applies. (Only the 

grad(ω) term applies in regions marked *). Due to 

the fact that some of the matrix components are 

switched off in different Domains, the system 

becomes “staggered” as discussed. It is also 

necessary to deactivate dependent variables in 

certain Domains. E.g. it would not make sense for 

𝑉𝑚𝑒𝑚 to be active in Domain 5 since COMSOL 

would have no way to know how to solve for this. 

Such mistakes can happen, but COMSOL is good at 

pointing out when a degree of freedom cannot be 

determined. 

It is interesting to note that the C-matrix in (6) is not 

block diagonal. This is due to terms in which molar-

fractions are linked to pressures in (1). In later work 

we have eliminated molar fractions in terms of 

densities so that the matrix becomes block diagonal, 

a situation which seems more satisfactory. 

5. Results 

Figure 4 shows the oxygen mass fraction result on 

the cathode side of the RVE. The oxygen is input at 

the top right of the figure so the oxygen 

concentration naturally decreases as we move to the 

other port. Note that oxygen is only present in the 

cathode area: this dependent variable is deactivated 

at the membrane and anode region. Figure 5 is 

equivalent to Fig 4 except we are scanning along the 

line x=1.6 mm to produce a line graph. The figure 

shows the same result for the module and equation-

based simulation proving that the two simulations 

solve the same physics and validating both models. 

Figure 6 shows the I-V curve obtained from the 

model. The result agrees well with experiment (not 

shown). 
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Figure 4: Plot of oxygen mass fraction at the cathode side of the cell. 

 

 

Figure 5: Plot of oxygen mass fraction through the cathode side of the cell for: built-in module based modelling (left) and 

equation based modelling with the coefficient mode (right) 

6. Conclusions 

We have shown that a fuel cell can be modelled 

using both COMSOL’s built-in modules and by 

directly specifying the equations needed using the 

coefficient mode. The latter approach, while more 

complex, allows us total control over which 

equations we are solving and will allow us to 

generalise the model in future, e.g., extending it to 

3D, replacing the Darcy physics with Navier Stokes 

equations, and using densities in place of mass 

fractions in the Maxwell Stephan formulation. In 

this paper we have described a sophisticated and 

highly non-linear fuel cell system based on a novel 

agglomerate model for the electrochemical 

reactions.
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Figure 6: Current-voltage curve obtained for fuel cell with a variety of agglomerate parameters. 
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