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Principles of waveguide propulsion

Simulation of optical forces: Maxwell stress tensor vs. pressure
Squeezing of red blood cells on a waveguide

Trapping in a waveguide gap: Interference & levitation
Phase-change due to trapped particle: S-parameters

Summary



Waveguide propulsion

Transparent microparticles are attracted by strong field
gradient (evanescent field).

Radiation pressure propels particles along the waveguide.

Top view of waveguide (Ta,0Ox). -
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Waveguide propulsion — on straight waveguide c'gt,cgé
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Waveguides made of Ta,O. (n = 2.1)

Red blood cells: 6 um/s (in sucrose), Polystyrene microparticles: 50 um/s,
Nanowires: > 500 um/s !

Waveguide propulsion of red blood cells

Waveguide propulsion of nanowires

Photon. Tech. Letters, 21, 1408, (2009)
Optics Express,18, 21053, (2010)
Optics Letters, 36, 3347-3349 (2011)




Simulation of optical forces with Comsol

X L

y
Define geometry Find forces by integrating Maxwell’s
Define mesh Stress Tensor over the surface of the

Set boundary conditions particle

Memory-intensive, using e.g. 8x128 GB

Find waveguide mode
on a cluster

Propagate through geometry
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Simulation of optical forces with Comsol zg
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* Forces by integrating Maxwell’s stress
tensor (MST) over surface of particle:
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— Comsol: emw.unTx, unTy & unTz

e Optical pressure given by field
(ref. Brevik & Kluge, JOSA B, 1999):
can also be integrated over surface to
give force:

F.=[0s "' n, da
S
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Simulation of optical forces with Comsol .?@
Force from MST vs. from optical pressure %56
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* And for high???
1.5 Cause of error:
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0.5 * MST subtracting large numbers?

 Error in Comsol for MST?
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Optical pressure e

Can be found from:
— The field using the expression of Brevik & Kluge, cAM
— Difference in diagonal radial components of MST on the two sides of a surface
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Forces & pressure on red blood cells (RBC) % ‘;
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Pressure (Pa) and direction
a) From bottom, through w.g.
b) Cross-section

Analyst, 2015,140, 223-229
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Force & torque on RBC i
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Squeezing of red blood cells
on tapered waveguide

Analyst, 2015,140, 223-229
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Loop with a gap: Transport & stable trapping  =SE):
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* On a waveguide, particles are continuously propelled forward

e Alternative: loop with intentional gap on the far side

e Particle is stably trapped in the gap by the counter-propagating
fields

(@) (b)

Waveguide loop with a 2um gap

Lab Chip, 12(18), 3436-40, 2012



Trapping in waveguide gap: ..
Simulation of 2um gap RN
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« Symmetric about centre of

waveguide
» Simulate half the problem

 Interference fringes caused by the
two counter-propagating beams

a) 3D-model
b) Field, side-view

c) Field, top-view

Lab Chip, 12(18), 3436-40, 2012



Trapping in waveguide gap:
Simulation of

Horizontal and vertical
forces as sphere is
moved across gap:

Transversal and vertical
forces as sphere is
moved sideways out of
the gap:

Lab Chip, 12(18), 3436-40, 2012
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Trapping in waveguide gap: Optical levitation?%,cgé
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Polystyrene sphere,
2 um dia., fluorescent

waveguide ends | ¢ 2um gap = tight trapping
— oy « 10um gap = levitation?
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Trapping in waveguide gap: Optical levitation! ;)"“

On waveguide n gz) Q Laser off, leaves gap
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- Particle solution

PDMS cladding

- Si;N, waveguide
| SiO, claddig

@ sivafer a)

Measurement set-up: Simulation using PMLs, input and

Waveguide Young interferometer output ports.

Phase and transmission found from

Lab Chip, 2015,15, 3918-3924 S-parameters.
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Summary éﬁé

Comsol works fine to find the field around nano- and
microparticles on waveguides

— But memory-hungry: Up to 1TB RAM
Optical forces: Problem with Maxwell’s stress tensor
Optical pressure: Can be combined with mechanical model?
Interference and resonances require tight sampling
Critical to avoid reflection from PML at end of waveguide

Use PML with slit port excitation for counter-propagating
beams
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Squeezing of red blood cells
oh narrow waveguide

* RBCs are squeezing on waveguides < 6um wide
* RBC regains shape when laser is switched-off
* No permanent loss of RBC elasticity was observed

Waveguide

\
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Laser off Laser on

Laser Off
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