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Transformations in polymers, such as polymerisation,
melting/crystallization, and phase separation/remixing, are
associated with changes in both rheological and thermal
properties. To permit simultaneous calorimetric and
rheometric measurements, the RheoDSC was developed.

The RheoDSC combines two commercial instruments, a TA
Instruments Q2000 DSC and a TA Instruments AR-G2
dynamic rheometer. A rheological measurement s
performed on a sample sitting on a sample plate that is on
top of the DSC sensor platform. This plate is fixed using
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Fig. 1: RheoDSC setup: (left) rotor assembly with connection
towards the rheometer permitting rotor alignment, (middle) DSC
cell and rotor assembly showing the off-centered positioning of
the DSC cell compared to the rotor, and (right) DSC sensor
platform with stator assembly, sample, and rotor (right).

Fig. 2: (left) Meshed geometry with about 36000 elements,
(right) Mesh quality depicted for the 5 % worst
elements.
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insulated screws on an aluminium insert that sits a

base of the DSC sensor. The setup shown in Fig. 1.
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Through heat transfer modelling with

successfully optimized the design and the material selection.
All finite element simulations were performed using Comso/
Multiphysics v4.2 using the Heat transfer module and the
Chemical reaction engineering module. The transient
simulations were conducted with a direct PARDISO solver
and backward differentiation formula (BDF) on a Windows
XP 64 bit computer with an Intel® Core™ 2 Quad Q9550 @
2.83 GHz processor and 16 GB RAM memory. The total

assembly has approximately 36000 elements (Fig.2).
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Fig. 3 Reduction of the thermal lag in RheoDSC by placing
-6 | | | a cylinder in PAI, the rotor material, on the reference side to
equilibrate the unbalance.

For the optimization of the instrument design, DSC | ' | (top) Geometrical model depicting PAI towers of different

. . . . . heights on the reference sensor.
experiments were simulated using Comsol. Simulations were (bottom) Temperature difference between sample and

made far roaactina ar crvcetallizina eamnlee hy inchidinn s reference sensor, A 7., for the cure of a thermosetting resin
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for different tower heights (no tower, 0.4 mm, 1 mm, 2 mm,

suitable models for the transformation kinetics. In this way, 4 mm, 6 mm and 8 mm) of PAI towers on the reference
: : / sensor side and for comparison a setup with no rotor on the

the S|mulateq measured heat flux’ can be compared to the sample (heating from 25 °C to 250 °C at 5 K min-).

heat release in the sample to evaluate thermal lag and peak

distortions.
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- Thermal lag simulations (Fig. 3):

In a heat flux type DSC, the heat flow rate to the sample is
obtained by multiplying the temperature difference between
the sample and reference sensors with a calibration factor.
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Fig. 4 : Simulations for selecting the rotor material

Thermal lag is observed when going from an isothermal to a (top) Temperature distributions in the RheoDSC setup for
: : . . different rotor materials for an isothermal at 100 °C.
heating segment. It is due to a different time constant for heat (mid) Temperature difference between sample and
transfer on sample and reference side. The high heat fseifn‘jflggsnse’;Sf"”’nﬁnﬁg;tfﬁ;r:igffeg;rgpezxg;ri‘r’:;gatija'z
capacity and low thermal conductivity of the rotor cause a thermosetting epoxy amine (25 °C to 250 °C at 5 K min'?).
slow equilibration and a considerable baseline shift upon (below) Contribution of the reaction exotherm to A Tsr -
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time/s two levels of holes in a cross pattern (cross) indicated with the

the strong reduction of the baseline offset using the crossed pictogram, simulated for an isothermal at 100 °C.

o _ . i T . : . Fig. 6.: Heat flow rate signal for a cooling experiment of semi (below) Temperature difference A7 for the different rotor
noles rotor as well as the limited direrences In peaK crystalline polymer (EVA 33) from 100 °C at 5 K.min"! towards designs. Simulation of non-isothermal cure experiments of a
distortion. -60 °C with the different rotor setups without (top) and with thermosetting epoxy amine (25 °C to 250 °C at 5 K min-).

(bottom) subtracting a baseline.
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