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Abstract:  Nanofluids/nanocomposites are 
suspensions of nanoparticles in a fluid/solid 
matrix. A simple procedure for the numerical 
prediction of their effective thermal conductivity 
was devised using Comsol Multiphysics. It was 
tested against an analytical formula from a 
classical paper published by C.W. Nan et al. in 
the Journal of Applied Physics in 1997 taking 
into account an interfacial thermal resistance. 
Despite repeated attempts the results were found 
to differ significantly, which led to question the 
derivation of the analytical formula. The 
omission of two contributions, from respectively 
the shape and the aspect ratio of the particle + 
interfacial layer system, was detected. The 
formula could be corrected for the aspect ratio 
contribution, which led to considerably improved 
agreement with the numerical predictions. 
 
Keywords: Effective thermal conductivity, 
Interfacial resistance, Nanofluids. 
 
1. Introduction 
 

“Nanofluids” and “nanocomposites” can be 
defined as fluids or materials consisting in a 
matrix in which a certain amount of small-sized 
particles, for instance with dimensions under 100 
nm, is dispersed. They have received a lot of 
attention in the past few years because they are 
expected to have much improved properties 
compared to the initial matrix, without the 
drawbacks of “conventional” (not nanometric in 
size) suspensions. Since the possibilities for 
manufacturing particles with exotic shapes or 
characteristics are ever growing (see for instance 
[1]), it was thought useful to devise a way to 
select which materials and shapes have a 
potential for better characteristics. One property 
of particular interest is the thermal conductivity. 
The initial motivation for the present work was 
therefore to explore the relationship between the 
shape and nature of the particles and the thermal 
conductivity of the nanofluids or composites 
containing them.  
 

2. Method 
 

Our approach was guided by the “benchmark 
study on the thermal conductivity of nanofluids” 
published in 2010 in the Journal of Applied 
Physics [2], a conclusion of which was that a 
wide range of experimental data could be 
correctly reproduced by a standard conduction 
model including an interfacial resistance between 
the particles and the matrix. 

More specifically, the technique adopted (as 
presented by Mejdoubi and Brosseau in [3]) 
consists in solving a heat conduction problem in 
a cubic cell containing one particle and 
submitted to a temperature difference on two 
opposite faces and to a zero-flux condition on the 
other ones, as illustrated on Figure 1: 

 

Particle

Imposed temperature = 0

Imposed temperature = 1

Zero heat flux

 
Figure 1. Conduction problem to be solved. 

 
The equations read (T: temperature, K: 

thermal conductivity, RBd: interfacial resistance; 
subscripts m and p denote the matrix and the 
particle phases; ni: outward-directed normal to 
phase i): 
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They express respectively the steady-state 
conduction of heat, the zero flux and imposed 
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temperature boundary conditions, and the 
continuity of heat flux at the particle-matrix 
interface. 

The heat flux through the cell is calculated 
by integration on one of the imposed-
temperature faces and translated into an 
equivalent conductivity K. The calculation is 
repeated for various cell sizes, corresponding to 
various (low) particle volume fractions v. The K-
v relationship is finally analysed as a series 
expansion: 

[ ] ( )21 vOvK
K

K

m

++=  

[K] is termed the “intrinsic conductivity”. It 
expresses by how much the equivalent 
conductivity will be increased by the addition of 
a given volume fraction of particles, and can 
therefore be used to compare the efficiency of 
different particle shapes, materials or sizes. 
 
3. COMSOL Multiphysics calculation 
 

Two “heat transfer in solids” physics 
modules were used, respectively for the matrix 
and the particle phases. They were coupled via 
“heat flux” conditions, using the “inward heat 
flux” option (“heat transfer coefficient” = 1/RBd, 
“external temperature” equal to the temperature 
in the other domain). 

Alternatively, a single “heat transfer in 
solids” module was also used with a “thin 
thermally resistive layer” inserted between the 
particle and the matrix. But this option was not 
found quite as reliable as the simple coupling 
described above. 

Default quadratic discretization was used in 
most cases. 

The “finer” element size with a “physics-
controlled” mesh generally did a good job (the 
“extra fine” and “extremely fine” options were 
also tested, but gave essentially the same 
results). 

Comsol Multiphysics version 4.3 was used 
on a standard Personal Computer. Convergence 
was usually obtained within a few tens of 
seconds with the default solver settings. 
 
4. Validating the procedure: platonic 
solids 
 

Before attempting the optimisation of 
nanoparticles, it was thought wise to validate our 

procedure, first of all in the case of no interfacial 
resistance. 

Abundant data have been published on this 
subject (for instance in the paper by Mansfield et 
al. [4]). Among them we selected the results of a 
study by Sihvola et al. [5]. These authors 
computed very carefully the polarizabilities (an 
equivalent of our intrinsic thermal conductivity) 
of the platonic solids: namely the tetrahedron, 
cube, octahedron, dodecahedron and 
icosahedron, to which the sphere was added as a 
limit case. 

The results are shown in Table 1 for an 
infinite Kp/Km ratio. Our results do not differ by 
more than 2% from Sihvola’s. 

 
Table 1: Intrinsic conductivity of the platonic solids 

 
Solid Sihvola [5] This work 

Tetrahedron    5.0285 5.027 

Cube               
3.6442 3.697 

Octahedron     3.5507 3.618 

Dodecahedron  3.1779 3.206 

Icosahedron     3.1304 3.148 

Sphere              3 2.9996 

 
In our opinion these results are astonishingly 

good. One should keep in mind that the volume 
fractions used in the calculations are in the 10-3-
10-2 range. The K/Km ratio therefore differs from 
unity by no more than about 1%, which means 
that a 4 to 5-digit accuracy in the heat flux 
calculation has to be attained to achieve such 
precision on [K]. 
 
 
5. Validating the procedure: Nan et al.’s 
classical paper [6] 
 

The case of the effective conductivity with 
interfacial thermal resistance is clearly more 
difficult and published data seem much scarcer. 
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A theoretical paper on the subject was published 
in 1997 by C.W. Nan and co-workers in the 
Journal of Applied Physics. It addresses the case 
of a composite containing ellipsoidal particles, 
taking into account an interfacial resistance, and 
derives a reasonably simple analytical solution. 
This paper is quite popular and has received, as 
of today, almost 600 citations according to the 
Scopus bibliographic database. It was used, for 
instance, in the above-mentioned benchmark 
study on nanofluids [2] to analyse the 
experimental data. 

The basis of Nan et al.’s paper consists in 
calculating the equivalent conductivity of the 
ellipsoidal particle plus the interfacial resistance, 
actually the equivalent conductivity tensor since 
this object is not isotropic. The result reads: 
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where i = 1,2,3 denotes the 3 principal axes of 
the ellipsoid, p the aspect ratio (ratio of the 
dimensions along the axis of revolution and 
perpendicular to it: p>1, oblate particle, p<1, 
prolate particle), a1 the dimension perpendicular 
to the axis of revolution and the Li’s are 
functions of p: 
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Figure 2. Results of our procedure against Nan et al.’s 
formulae: sphere with interfacial resistance. r: radius 
of the sphere. 

 

Comparison with the results from our 
procedure was excellent in two cases, the sphere 
with interfacial resistance (Figure 2) and the 
ellipsoid without it (Figure 3). Maximum 
deviations again never exceeded 2%. 

 
 

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

In
tr

in
si

c 
co

nd
uc

tiv
ity

 (
-)

C
om

so
l c

al
cu

la
tio

n

Intrinsic conductivity (-) - Nan et al.

Kp/Km = 50 parallel
Kp/Km = 50 perpendicular
Kp/Km = 1000 parallel
Kp/Km = 1000 perpendicular

p = 0.1 to 10

 
Figure 3. Ellipsoid without interfacial resistance. The 
“parallel” and “perpendicular” directions are defined 
with respect to the axis of revolution of the ellipsoid. 

 
On the contrary, agreement was very poor in 

the case of ellipsoids with interfacial resistance 
(Figure 4), where differences as large as 100% 
could be observed. 
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Figure 4. Ellipsoid with interfacial resistance. a1= 5 
nm, RBd = 10-8 m2.K/W, Km = 1 W/m.K. Dashed line: 
+100%. 

 
More specifically, the discrepancy increases 

when the aspect ratio differs significantly from 
unity (Figure 5). 
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Figure 5. Selected data from Figure 4 (Kp/Km = 
1000), expressed as a function of aspect ratio p. 

 
This observation was found quite disturbing 

and various classical remedies were tested: 
• increase of mesh density, 
• use of a more precise discretisation scheme, 
• creation of a finite-thickness buffer domain 

between the matrix and the particle, 
• use of the “thin thermally resistive layer” 

option. 
 
None of them allowed to reduce the gap 

between numerical and analytical predictions; as 
a matter of fact,  the same results were 
repeatedly obtained. 
 
6. Analysis of Nan et al.’s model and 
subsequent modification 
 

It was then decided to trust the numerical 
simulation and (not without qualms) examine the 
derivation of Nan et al.’s model. 

This derivation is basically composed of two 
parts. The first one, briefly mentioned in the 
previous Section, consists in calculating the 
equivalent conductivity of the particle + interface 
system. The second one establishes the 
relationship between the conductivities at the 
particle and the nanofluid or nanocomposite 
scales, independently of the existence of the 
interfacial resistance. Our initial success with the 
no-interfacial resistance ellipsoids suggests that 
the problem, if any, lies in the first part of the 
analytic development. 

The technique used by Nan et al. consists in 
calculating the equivalent conductivity of a unit 
cell composed of the ellipsoidal particle 
embedded in an interface layer with constant 
thickness δ, and passing to the limit that δ tends 
to zero. We hold that the calculation as 

developed by Nan et al. implies that i) the overall 
shape of this cell should be an ellipsoid ii) the 
aspect ratios of the particle and the surrounding 
layer should be identical. It so happens that 
neither is true, as illustrated by Figure 6 (the 
parameters of which have been deliberately 
chosen to emphasize the differences). 
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Figure 6. Ellipsoidal particle, aspect ratio p=5, 
a1=1 (thick line); interfacial zone with thickness 
δ=a1=1 (thin line). Dashed line is the ellipse with 
aspect ratio ( ) ( )11 1 aap δδ ++  = 3. 

 
It appears clearly that the interfacial zone 

(thin line) does not coincide with the only 
possible ellipse (dashed line) and that the latter 
also has a much smaller aspect ratio than the 
original particle. These differences obviously 
become vanishingly small when thickness δ 
tends to zero, but that does not mean that they do 
not contribute to the overall result. 

We therefore feel entitled to claim that Nan 
et al.’s derivation omits a shape contribution and 
an aspect ratio contribution. The former is 
unfortunately rather complicated and at any rate 
beyond our mathematical abilities. We found the 
latter more tractable. Our approach consisted in 
using a classical effective medium “mixing law”, 
described for instance in another paper by C.W. 
Nan [7], with the correct aspect ratios in the 
expressions of the Li functions of the particle and 
the surrounding layer. The details are of little 
interest here. It was then straightforward (if 
rather tedious) to derive a corrected equivalent of 
equation (1): 
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7. Comparison of the modified model with 
the numerical results 
 

The analytical data of Figures 4 and 5 were 
re-calculated using equations (2) and (3). The 
results are shown in Figures 7 and 8 below. 
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Figure 7. Same calculations as in Figure 4, 
revised model. 
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Figure 8. Same calculations as in Figure 5, 
revised model. 

 
Agreement is still not perfect but much 

improved since maximum deviation is now less 
than 10%. The remaining difference might come 
from neglecting the shape contribution 
mentioned in the previous section. 
 
8. Conclusions 
 

Two questions can now be raised. Firstly, it 
is disturbing that a scientific paper with hundreds 
of cites should lead to erroneous results. Is it 
plausible that none has ever done the simple 
simulation reported here, or done it and reached 
similar conclusions? More generally, can we 
trust a numerical simulation against an analytical 
development? In our opinion, the coincidence of 
the numerical results and the revised model can 

hardly be explained by chance or artefact and 
gives some confidence in the present 
developments. We should however be happy to 
see our numerical and analytical calculations 
checked by someone else. 

Secondly, what would the consequences be, 
if our conclusions are correct? We believe that 
they should remain quite modest, in the case of 
nanofluids/nanocomposites, because interfacial 
resistance RBd is not well known and often 
treated as an adjustable parameter. The new 
formulae would only result in other, probably not 
very different, values. But again we should be 
very pleased to see other (and hopefully better) 
people address this question. 
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