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Abstract

This abstract introduces a sensor design for detecting angular acceleration in a single plane using
thermal convection. The working principal of the device is based on probing temperature profile
changes along a micro-torus caused by angular acceleration. By properly choosing the locations
of the heaters as well as the temperature sensors, the output signal will correlate to in-plane
angular acceleration of the micro-structure, while canceling out linear acceleration within the
plane. This work demonstrates simulation and experimental results, which provide design
guidelines for optimizing the detection of angular acceleration. Measured devices show a
sensitivity of 16.1µV/rad/s^2, and a frequency response of DC to 80Hz, while consuming a non-
optimized 1.2mW.

The design comprises four or more linear thermal accelerometers that are placed along the
circumference of a micro-machined torus to detect the tangential acceleration along the torus.
The tangential acceleration relates to the angular acceleration though α = a/R, where α, a, and R
are the angular acceleration, tangential acceleration, and major radius of the torus, respectively.
Each of the four linear accelerometers consists of a central heating resistor and two
symmetrically-arranged, resistive temperature probes that monitor the temperature profile
generated by the heater. A clockwise angular acceleration applied to the structure increases the
temperature of the four upstream probes while the four downstream probes experience a
temperature decrease. Thus, the resulting temperature difference is a measure of the applied
(tangential) acceleration. An angular acceleration yields the same output for all four sensors,
while linear accelerations can be distinguished by their characteristic response patterns. In
addition, a closed torus structure (similar to the semicircular canals of the vestibular system) is
intrinsically insensitive to linear accelerations. The geometry of the individual sensors, e.g., the
distance between heater and T-probe, was optimized using COMSOL Multiphysics® software.

Figure 1 shows an optical image of a fabricated angular accelerometer design with R=2.85mm.
Figure 2 shows the response of a single sensor to angular acceleration; the particular design had
an etched channel depth of 350µm and a main radius R = 2500µm. A rate table was used to apply
different angular accelerations with a frequency of 2Hz. The measured device sensitivity is 16.1
µV/rad/s2.

COMSOL Multiphysics was used to simulate the device using the Conjugate Heat Transfer



physics interface. Initial device simulations were performed on a 3D linear structure: to this end,
the torus was unwrapped and turned into a linear pipe, with periodic boundary conditions for fluid
flow and heat transport being applied to the ends of the device, as shown in Figure 3.
Subsequently, a comprehensive 3D torus model was simulated. Fig. 4 shows the temperature
distribution in the center of the pipe around the heating element for the cases of zero applied
angular acceleration and α = 1000 deg/s2. From the difference of both temperature profiles, the
optimal distance between heater and T-probe can be deduced.
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Figures used in the abstract

Figure 1: Optical image of fabricated device with R=2.85mm. The inset shows a second design
with only two heaters and four temperature sensors.



Figure 2: Output voltage change across temperature probe biased with 1mA as a function of the
angular acceleration applied (f = 2Hz). The sensitivity is 16.1 uV/rad/s2.

Figure 3: Simplified 2D COMSOL model by unwrapping a torus and applying periodic boundary
conditions

Figure 4: Simulated temperature profile along torus (left and right of a heater) for alpha=0 and
1000 deg/s^2 as well as temperature difference between both profile, showing the optimal
location of the T-probes.


