Web-Based 3D Visualization for COMSOL
Multiphysics® Software

S. Grabmaierl, M. Jiittnerl, W. M. Rucker!

1University of Stuttgart — Institute for Theory of Electrical Engineering, Stuttgart, Germany

Abstract

Introduction

An important point for interpreting results of numerical simulations is the visualization. Especially
in the field of product or development presentations and teaching issues an available and
lightweight visualization solution is expected today. Here a web based visualization for common
web browsers is described. Furthermore all recently introduced mobile devices are supported
and easy and intuitive interaction is provided by supporting multi touch gestures.

Web based visualization

Hypertext Markup Language 5 (HTMLS5) and Web graphics library (WebGL) represent a new
technology standard in the internet. They do allow complex 3D application running in the web
browser with high performance. To display results of a COMSOL Multiphysics® simulation in a
web browser the concept of the presented systemis shown in figure 1. Starting with a solved
COMSOL Multiphysics® model including available 3D plots at a COMSOL server, plot data is
exported by an external Java application to the webserver. This Java application uses the
COMSOL Multiphysics® Java Application Programming Interface (API) for accessing
COMSOL server and a binary format, similar to the COMSOL Multiphysics® data structure, to
store data at the webserver. The webserver is based on Node.js and hosts a web application
(web app) as modern single page website. The data transfer of the binary plot data from the
webserver to the browser is handled by Web Sockets [1] to achieve an efficient and smooth data
exchange. Node.js is used to provide a server with little logic and high input/output performance
and scalability [2]. The transmitted volume of three COMSOL Multiphysics® example models
are shown in figure 2. The web app at the client contains the logic and interactivity. It uses
standardized HTMLS and JavaScript functionality. Therefore no rendering is required on the
webserver. The 3D visualization is realized in WebGL [3], a 3D API for JavaScript based on the
OpenGL Interface (OpenGL ES 2.0). The advantage of using WebGL is the broad availability on
different devices (i.e. smartphone, tablet, PC). It covers all necessary functionality to realize a
render engine comparable to the renderer used in COMSOL Multiphysics®. Using the same plot
data structure for COMSOL Multiphysics® plots, almost every 3D plot (isosurface, slices,
arrow volume) gets available by using a minimalistic render engine. When it comes to pure 3D
performance, the WebGL solution can handle complex and data intensive plots with constant
frame rates. Figure 3 shows the achieved frame rate for the visualization of a power transistor
model on a common desktop computer graphic processing unit (GPU) and on a mobile GPU.

Conclusion

A web based visualization for 3D COMSOL Multiphysics® plots was implemented by using
Java API and web technologies. The performance of the system was shown for common
models. The data transfer for the web based 3D visualization is minimal, so visualization is
possible even with low bandwidth.

Reference

[1] Web Sockets and its benefits: http:/www.websocket.org/quantum.html (May, 2014)

[2] Official webpage of the Node.js project: http://nodejs.org/ (May, 2014)

[4] WebGL, overview and official specification: http://www .khronos.org/webgl/ (May, 2014)
[5] COMSOL example model: power transistor, Plot: Arrow Volume with 5000 single arrows;
maximal frame rate limited to 60 FPS.

Figures used in the abstract

Web clients web Webserver a Java Application [| COMSOL Server
HTMLS/ WebGL sockets based on Node.js SHe; ‘model conversion ava
° data u COMSOL Model
. [B [
e @ 2
4 va

Figure 1: System Architecture.

Model name Plot type Size [KB]
i Surface 290

Surface 898

Power Transistor Arrow Volume 120

Figure 2: Data Size of 3D Plots.

GPU Average Frame Rate [FPS] Polygons
Nvidia Quadro 600 585 ca 600,000 Triangles
PowerVR SGX544 4435 ca. 600,000 Triangles

Figure 3: Benchmark WebGL Renderer. [5]

