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For decades, silicon has been considered the optimal material for electronics mass production. In the last few years, the possibility to realize highly performing active and passive photonic integrated devices
using Silicon-on-Insulator (SOI) technological platform has been widely proved [1]. One of the most important aspects of any integrated optical technology for sensing or communication applications is the
evaluation and control of the optical birefringence [2]-[3]. Generally speaking, the optical birefringence depends on the waveguide cross section, material and plasma dispersion effect [4], and mechanical
stress. In this contest, a detailed study has been proposed in [5], demonstrating that the stress engineering can be considered an effective tool to modify or eliminate polarization dispersion in SOl waveguide
device, for a wide range of waveguide cross-section shapes and sizes. In addition calculations and experiments proposed in [5] confirm that the SiO, cladding induced-stress can be used to eliminate the
birefringence in SOl waveguides of arbitrary shapes for typical film stress values ranging from 100 to 300 MPa. Therefore, the goal of this work is to develop a self-consistent and integrated approach, in order
to generalise the analysis presented in [5] including thermal and mechanical stress effects on guided-wave propagation in optical rib waveguides. In practical applications, a rib waveguide is often in contact
with a surface at higher temperature that causes heat flow into the device: this results in material strain and, ultimately, in an optical birefringence. Besides, in many applications of such components, strain is
also produced by a pressure that acts on the device. The situation is illustrated in Fig. 1 (a), where F is the force applied on the device and Q is the heat propagating into it. A silicon-on-insulator rib waveguide
IS in contact with an aluminum layer through a silica layer; the heat flow is caused by the heated aluminum layer whose temperature is higher than that of the rib. The aluminum layer also transmits the pressure
on the component. The stresses applied to the waveguide material structure cause each mode to be rotated. Thus, in this paper we use Comsol Multiphysics™ [6] to obtain a fully integrated simulations of SOI
waveguides in order to estimate the birefringence compensation.
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Figure 1 (a) Domain structure; (b) SOl waveguide cross-section.
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Figure. 2. Steady-state temperature distribution induced by aluminum Figure. 3. Von Mises stress distribution for T, =350 Kand F, = 10° N/m"2.
layer at T, =350 K
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Figure. 4. x-component of electric field (quasi-TE mode)

Figure. 5. y-component of electric field (quasi-TM mode)
for T, =350 Kand F,=10°> N/m? (Wg1).

for T,=350 Kand F,= 10> N/m? (Wg1).

Wg1: Hg=0.22 ym, W =1 pum, H =1 ym, H, =0.78 ym; Wg2: Hs=0.22 ym, W = 0.5 pym, H = 0.61 pm, H; =0.39 uym. < n,—n, =-Bo, -B, (Gy +c72)
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In this work a fully integrated multiphysics model, involving heat
transfer, mechanical stress and electromagnetic modules, has
been used for SOl waveguides. Physical effects induced by
heating and external pressure acting on the device have been
investigated. Effective refractive index changes for quasi-TE and
quasi-TM optical modes have been calculated for SOl waveguides
with micro and nano-scale cross section. Through this calculation,
a thermal and pressure slope has been estimated in order to
realize an useful tool for the optical design of optical waveguides
under different temperature and pressure conditions.
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