Effect of Substrate Contact Angle on Ink Transfer in Flexographic Printing

F. E. HIZIR and D. E. HARDT

Massachusetts Institute of Technology

Outline

- Introduction
- Motivation and Objectives
- Simulations
- . Methodology
- . Results
- Conclusions and Future Work

Flexography

^[1] H. Kang et. al., Advanced Materials, 2012

^[2] Wikimedia/meharris

^[3] Gyou-Jin Cho/Sunchon National University

^[4] A. Hubler et. al., Advanced Energy Materials, 2011

Ink Transfer in Flexography

Ink Transfer in Flexography

Motivation and Objectives

Ink Transfer from Stamp to Substrate

- Thickness of printed product
- Device performance

Objectives

- Guidelines for substrate and stamp design
- Control printed layer thickness
- Investigate contact angle effects

Simulation Domain

Simulation domain and its dimensions

Parameters used in the simulation

0.1 N.s/m ²	
1000 kg/m ³	
1.81e-5 N.s/m ²	
1.16 kg/m ³	
0	
0.1 m/s	
32µm2	
1 N/m	

Simulation Setup

Ink splits into Two

- Moving mesh interface is coupled with laminar two-phase flow, phase field interface.
- Initial velocity and pressure values are set to zero for the two fluids.
- Initial mesh displacement is set to zero.
- Pressure is set to zero at right boundary which is defined as inlet.
- Stationary bottom surface is defined as "wetted wall" with 60° ink contact angle.
- Upper surface is defined as "moving wetted wall" with 60° contact angle.

Mesh Refinement ($\theta_{top} = \theta_{bottom} = 60^{\circ}$)

Maximum mesh element size for left of domain: A \rightarrow 0.25 μm, B \rightarrow 0.08 μm, C \rightarrow 0.06 μm Change in total mass < 2% COMSOL CONFERENCE

2014 BOSTON

Effect of Contact Angle

Results

- Expected trend is observed
- Results do not exactly match with literature
- High computation times

Conclusions and Future Work

- Splitting of ink between two parallel plates is simulated
- Ink transfer ratio to the upper plate is found to increase with decreasing ink contact angle on its surface
- High computation times due to fine mesh requirements is the main difficulty
- Future work is to cover a larger range of contact angles in the simulations

Thank you

Q&A

