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Definitions of Measures of Solar Cells

� Isc = short circuit current

� Voc = open circuit voltage

� Imp =  max power point 
current

� Vmp = max power point 
voltagevoltage

� Fill factor, FF =

� Efficiency =
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� Basic Processes
� Optical Illumination & Absorption (in whole structure)

� Polaron Generation & Carrier Recombination (in P3HT:PCBM only)

� Carrier Transport ( in P3HT:PCBM only)

Review of Physics of Organic Solar Cells
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Other OPV device model

� 1D electronic model from University of Groningen, The Netherlands developed by Koster et al (PRB 72,
085205, 2005) for BHJ solar cells
� Constant optical generation in active layer assumed

� 2D optoelectronic model from University of Bath, UK by J. Williams et al (Nanotechnology 19, 424011,
2008)
� Only single wavelength illumination demonstrated

� 3D optoelectronic model by Koh et al
� Reduced recombination factor (IEEE Journal of PV, 1, 84, 2011)
� Non-germinate recombination due to traps (SPIE Photonic West OPTO Symposium 2013)
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Optical

� Solve the Frequency-Domain Maxwell Equations:
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� Spectral absorbed energy density in the photoactive layer 
(P3HT:PCBM) at each position (x, y, z) [1]:
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1) J. Williams et al, Nanotechnology, 19, 424011 (2008)
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Polaron Generation & Carrier Recombination

Excitons
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� Generation of polarons at each frequency ν and position (x, y, z)
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� Integrate the frequency dependent G over the AM1.5G solar spectrum
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Polaron Generation & Carrier Recombination

� At steady state and at each position (x, y, z) in the active layer (P3HT:PCBM), 
the net free carriers generated [2] is

RXkGXk fd +−=

� From Osnager & Braun’s germinate theory,
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[2] L. J. A. Koster et al, PRB, 72, 085205 (2005)
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Polaron Generation & Carrier Recombination

� The decay rate constant kf can also be derived from Osnager and Braun’s 
model with the following relation to kd:
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� The recombination rate of free carriers to polarons Rn,p can be described by
the using a trap model which will enable us to account for the dark current
generated due to traps [4]:
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3) J. A. Barker et al, PRB, 67, 075205 (2003)

4) N. C. Giebink et al, PRB 82, 155305 (2010)

[3]



ELECTRONICS & PHOTONICS DEPARTMENT

Device Model: Charge Transport

� Drift diffusion equations

� Poisson equation
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Boundary Conditions

� At hole-ohmic PEDOT:PSS
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� Continuity equation
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Validation and Calibration of Simulation 

Model with Experiment
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*Simulated J-V curves (symbols)
*Experimental J-V curves courtesy of IMRE (solid line)
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Simulation Parameters
Parameter Symbol Simulation Value Remarks

Bandgap Egap
1.1eV LUMO (PCBM=-4eV) [5],

HOMO (P3HT)=-5.1eV [6]

E-h pair separation a 1.15nm Related to kd [from Ref 7]

Electron mobility µn
0.7 x10-4 cm2/Vs Experimental Measurement=~10-4 cm2/Vs

Hole mobility µp
0.7 x10-4 cm2/Vs Experimental Measurement=~10-4 cm2/Vs

Decay rate kf
3x104 Constrained Fitting Parameter

E-h pair separation a 1.15nm Related to k [from Ref 7]
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E-h pair separation a 1.15nm Related to kd [from Ref 7]

P3HT:PCBM relative permittivity εr
3.4 Average Value of P3HT & PCBM

Characteristic temperature of 

trapped electrons (holes)
Tt,A

(Tt,D)

1200K Unique fitting parameter for dark current

Density of states of free 

electrons (holes)
NLUMO

(PHOMO)

4.2x1022 cm-3 Constrained Fitting Parameter related to 

Tt,A (Tt,D)

Density of states of trapped

electrons (holes)
HA (HD) 2x1013cm-3 Constrained Fitting Parameter related to 

Tt,A (Tt,D)

Series Resistance Rs
1.8Ω Experimental measurement is ~1-2Ω

5) M. D. Irwin et al, PNAS, 105, 2783-2787 (2007)

6) M. C. Scharber et al, Advanced Materials, 18, 789-794 (2006)

7) W. S. Koh et al, IEEE J. Photovoltaics, 1, 84-92 (2011)
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Plasmonic OPV (POPV) Device: 

Optical & Polaron Generation

� Structure with 200nm (long axis) by 40nm (short axis) Ag
nanoellipsoid in PEDOT:PSS @ 1% coverage is illuminated by
AM1.5G spectrum

Absorption Rate Generation of Polarons
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Control

POPV
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POPV Device: Carrier Transport
Electron Conc
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Potential
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POPV Device: J-V Characteristics

Control (T=300K) 

POPV (T=300K)

� % enhancement in Jsc is
approx % ↑ in optical
absorption

� ↓ temperature → ↑Voc is
consistent with
experimental behavior
small molecule OPV
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Device 

Characteristic

Control Cell 

(Experiment)

Control Cell 

(T=300K)

POPV Cell 

(T=300K)

POPV Cell 

(T=250K)

Voc (V) 0.55 0.55 0.55 0.64

Jsc (mA/cm2) 9.61 9.61 9.76 10

Efficiency (%) 3.6 3.76 3.82 4.6

Fill Factor 0.68 0.71 0.71 0.72

POPV (T=300K)

POPV (T=250K)

small molecule OPV
device by Giebink et al.
[4]
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Summary

� Developed a full 3D optoelectronic model for organic bulk-
heterojunction solar cell

� Validated our model with experiment for a control structure

� Illustrate and predict both optical and electrical characteristics of a
3D Plasmonic OPV device3D Plasmonic OPV device

� Open up possibilities to design and simulate nanostructure
enhanced organic bulk-heterojunction solar cells.

� Device physics is applicable for both polymer and small molecule-
based organic bulk-heterojunction solar cells.
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Thank You for your Attention

Any Questions?
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