Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider, M. Küttinger, P. Fischer, K. Pinkwart, J. Tübke, H. Nirschl

COMSOL CONFERENCE ROTTERDAM2013

Contents

- Redox Flow Batteries
 - Vanadium Redox Flow Battery
 - Vanadium Air Redox Flow Battery / Vanadium Oxygen Fuel Cell
- Multiphysics Modeling and stationary simulation
- Time-dependent simulation
- Alterations to the stationary model
 - Performance degradation over time
 - Using a parametric study to emulate a time-dependent simulation
- Result
- Summary and outlook

Vanadium Redox Flow Battery

Figure by Jens Noack, Fraunhofer-ICT

Project work: Planned 2 MW / 20 MWh Redox Flow Battery at our Institute

Vanadium Air Redox Flow Battery

Vanadium Oxygen Fuel Cell

Multiphysics Modeling

Momentum

- Liquid flow in vanadium half-cell and middle cell (porous media flow)
- Gaseous flow in air half-cell
- Mass and species
 - Diluted species in vanadium half-cell and middle cell
 - Concentrated species in air half-cell
- Chemical reaction
 - "Bulk" reaction within the porous electrode of the vanadium half-cell
 - Reaction at the membrane surface within the air half-cell
- Electrochemistry
 - Local potentials depending on species concentration
 - Electric and ionic currents

Stationary simulation (2)

Time-dependent simulation

Discharge cycle with a constant current density of 25 mA/cm²

Expanding the stationary model (1)

Additional Assumptions

- No side reactions
- No or negligible diffusion of vanadium ions
- Applying FARADAY's law, the constant current leads to a constant change rate in the state-of-charge of the vanadium oxygen fuel cell
 The time variable can be replaced by a state-of-charge variable
- The inlet concentrations of the species are either a function of the stateof-charge (vanadium electrolyte half-cell) or constant (air half-cell)
- Taking all of this into consideration, the time-dependent simulation can be replaced by the stationary simulation with a state-of-charge parameter study

Performance degradation by flooding

Expanding the stationary model (2)

Resulting Simulation

Summary and outlook

- Vanadium Oxygen Fuel Cell as an interesting energy storage device
- Our design can be modeled and simulated using COMSOL Multiphysics
- Simulated data from stationary model shows very good agreement with experimental data
- Time-dependent simulation does not consider degradation process
- Altered stationary model can account for cathode degradation and reduce time-dependent simulation to a stationary parametric study of SOC, thus saving computing time
- Model enhancement
 - Thermal effects
 - Membrane cross-over effects

Thank you for your attention!

Dipl.-Ing. Frank Wandschneider Fraunhofer-Institute for Chemical Technology Department of Applied Electrochemistry Joseph-von-Fraunhofer-Strasse 7 D-76327 Pfinztal / Germany E-Mail: frank.wandschneider@ict.fraunhofer.de COMSOL CONFERENCE ROTTERDAM2013

The authors gratefully acknowledge the funding by the Department of Commerce of the German Federal State of Baden-Württemberg

Ministerium für Finanzen und Wirtschaft Baden-Württemberg

