2D Axisymmetric Simulation of the Electrochemical Finishing of Micro Bores by Inverse Jet Electrochemical Machining

Matthias Hackert-Oschätzchen^{*,1}, Michael Kowalick¹, Gunnar Meichsner², Andreas Schubert^{1, 2}, Bernd Hommel³, Frank Jähn³, Matthias Scharrnbeck⁴, Rüdiger Garn⁵, Andreas Lenk⁵

Finishing of Micro Bores

- For fuel injection systems a defined edge shape of micro bores is needed to adjust the combustion properties
- Inverse Jet-ECM as procedure to realize the edge shape
- Development of a tool system for machining fuel injectors based on the results of the simulations (Fig. 1)

Commercial dispense tips applied as model geometry for

experimental investigations and simulations (Fig. 2 and Fig. 6) Transient Model of Inverse Jet-ECM

- Implementation of the basic experimental arrangement into an axisymmetric model (Fig. 2 and Fig. 3)
- Electrodynamics (Tab. 1), prediction of removed material and resulting geometry by applying Faraday's Law on boundaries 5 and 6 (Fig. 3)

 v_n = normal velocity of work piece surface η = current efficiency (100 %) M = molar mass (54.94 g/mol) z_A = valency (2.4) ρ = mass density (7.77 g/cm³) F = Faraday constant (9.65.10⁴ C/mol) J_n = normal current density

Boundary	Definition
1	Axis of symmetry
2	U = 0 V
3	$\vec{n} \cdot \vec{J} = 0$
4	$\vec{n} \cdot \vec{J} = 0$
	Continuity

Figure 2: Principle of Inverse Jet Electrochemical Machining [2]

Figure 4: Surface plot of electric current

Figure 5: Simulation result of the transient

Results

- Existence of a current density maximum at the edge of the micro bore (Fig. 4 and 8)
- Highly localized material dissolution according to the simulated current density distribution (Fig. 5)
- Experimental removal geometry (Fig. 7) shows very good coincidence to the simulated removal geometry (Fig. 5)
- Successful adjustment of flow rate with inverse Jet-ECM (Fig. 9) in a sequential machining process

Acknowledgements

density distribution [2]

electrochemical erosion at t = 0.1 s

Figure 6: SEM image of an unmachined micro nozzle [2]

Figure 7: SEM image of a micro nozzle after 0.1 s of inverse Jet-ECM [2]

Figure 8: Electric current density as function of the arc length along bore interior wall [2] **Figure 9:** Diagram of flow rate and working pressure within one processing sequence [1]

This project is funded by the European Union through the

European Regional Development Fund (ERDF) and from state

funds of the Free State of Saxony.

References:

- [1] B. Hommel, F. Jähn, M. Scharrnbeck, R. Garn, A. Lenk, M. Hackert-Oschätzchen, A. Schubert: Edge Rounding of Micro Bores by Inverse Jet Electrochemical Machining, Pro-ceedings of the 9th International Symposium on Electrochemical Machining Technology, accepted for publication
- M. Hackert-Oschätzchen, A. Martin, G. Meichsner, M. Kowalick, H. Zeidler, A. Schubert: Inverse Jet Electrochemical Ma-chining for Functional Edge Shaping of Mi-cro Bores, Procedia CIRP 6 (2013) 379-384, DOI: 10.1016/j.procir.2013.03.060.

Excerpt from the Proceedings of the 2013 COMSOL Conference in Rotterdam