Effects of flow and diffusion on blood coagulation in platelet poor plasma

A two-way coupling between hemodynamics and biochemistry

Diana Magnabosco, Henk van Ooijen, Bart Bakker, Rene van den Ham, Luca Formaggia

PHILIPS RESEARCH EINDHOVEN Molecular Diagnostic Department

POLITECNICO DI MILANO Mathematical Department «F. Brioschi»

- Biological background
- Mathematical and numerical model
- Results and analysis
- Conclusions

COMSOL CONFERENCE ROTTERDAM2013

Biological background Secondary hemostasis in platelet poor plasma

Coagulation network

- Tissue factor: TF
- Inhibitors
- Feedback loops
- Thrombin: flla
- Fibrin: Fbn

Output parameters

- Thrombogram: $t_{lag,} t_{max}$, C_{max}
- TGD
- t_{clot} , A_{clot}
- Wound-Clot

tlag

tmax Time [s]

COMSOL
CONFERENCE
ROTTERDAM2013Mathematical and numerical methodCOMSOL
CONFERENCE
ROTTERDAM2013Mathematical and numerical method

COMSOL
CONFERENCE
ROTTERDAM2013Mathematical and numerical methodBlood flow

Modified **Navier-Stokes** equations in Ω , t>0

$$\rho \frac{\partial u}{\partial t} + \rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = \boldsymbol{\nabla} \cdot [-p\boldsymbol{I} + \mu(\boldsymbol{x}, t)(\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla}^T \boldsymbol{u})]$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = \boldsymbol{0}$$

Viscosity depending on fibrin (threshold [Fbn]*)

$$\mu(\mathbf{x}, t) = \mu([Fbn]) = \begin{cases} \mu_{blood} \text{ if } [Fbn] < [Fbn]^* \\ \mu_{clot} \text{ if } [Fbn] \ge [Fbn]^* \end{cases}$$

PHILIPS Diana Magnabosco 24th October 2013

COMSOL
CONFERENCE
ROTTERDAM2013ResultsTissue factor and wound size

PHILIPS Diana Magnabosco 24th October 2013

COMSOL CONFERENCE ROTTERDAM2013 ROTTERDAM2013 Results Constant number of molecules

Set	TF ₀ [fmol/cm ²]		L _w [µm]	
1	-	67.5		40
2		70		38.6
3		90		30
4		110		24.5
5		/ 135		20

- Spatial distribution dominates over concentration level
- Contact region
- Contact time

- Increasing TF₀ or L_w enhances blood coagulation
 - stronger and accelerated burst
 - Larger clot and earlier clot occurrence
- Coagulation response is more sensitive to variation in $L_{\rm w}$ than ${\rm TF}_{\rm 0}$
 - Contact region/time
- Flow and diffusion have a limiting role on blood coagulation
 - Delayed and damped burst
 - Domination of the anticoagulant effect

LIPS Diana Magnabosco 24th October 2013

Effects of flow and diffusion on blood coagulation in platelet poor plasma A two-way coupling between hemodynamics and biochemistry

Thank you for your attention Questions

- M. Anand, K. Rajagopal and K. R. Rajagopal, "A Model Incorporating Some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood," *Journal of Theoretical Medicine*, vol. 5, 183– 218 (2003).
- T. Bodnár and A. Sequeira. Numerical Simulation of the Coagulation Dynamics of Blood. Computational and Mathematical Methods in Medicine, 9(2):83–104, 2008.
- A. Sequeira, R. Santos and T. Bodnár, "Blood coagulation dynamics: mathematical modeling and stability results," *Mathematical Biosciences and Engineering*, vol. 8, 425–443 (2011).
- M. Shibeko, E. S. Lobanova, M. A. Panteleev, and F. I. Ataullakhanov, "Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa.," *BMC systems biology*, vol. 4, p. 5, Jan. 2010.

