Study of the Thermal Behavior of Solar Cells Based on GaAs

E. GIUDICELLI¹, N. MARTAJ^{1,2}, A. PERONA³, S. PINCEMIN^{1,2} and Y. CUMINAL¹

1. IES, UMR5214, Université Montpellier II, Place Eugène Bataillon 34095 Montpellier, France;

2. EPF-Ecole d'Ingénieurs, 21 boulevard Berthelot, 34000 Montpellier;

3. Laboratoire PROMES-CNRS Tecnosud, Rambla de la thermodynamique, 66100 PERPIGNAN, France

Introduction

The two main advantages of solar concentration in photovoltaic (PV) cells are:

- Reduction of the PV conversion active surface;

-Increase of cells efficiency.

Here we are studying GaAs thermistors at equilibrium condition.

Computational Methods

PEPF Ecole d'ingénieuro

I'institut

d'électronique

The following equations are used to simulate the heat transfer and solar flow:

$$\rho C_p u \nabla T = \nabla (k \nabla T) + Q$$

 $-n.(-k\nabla T) = h.(T_{ext} - T)$

28

Results

Results of simulation with Multiphysics COMSOL Software:

Figure 3. Structure meshes

Figure 4. Field of temperature

Figure 5. Experimental results & temperatures in the termistors

Conclusions and perspectives

- -The experimental results are validated by the simulated model.
- -Thermoresistors tests on the way.
- Need to find a simple and low-cost way to cool down the PV cell at high concentration.

References

1. Alexis Vossier, Daniel Chemisana, Gilles Flamant, Alain Dollet, « Very high fluxes for concentrating photovoltaics: Considerations from simple experiments and modeling », Renewable Energy, Vol. 38, Issue 1, pp. 31-39, 2012

Ewa Radziemska, « Thermal performance of Si and GaAs based solar cells and modules: a review", Progress in Energy and Combustion Science, Vol. 29, N°5, pp.407–424, 2003.
Steven T. Yang, Manyalibo J. Matthews, Selim Elhadj, Diane Cooke, Gabriel M. Guss, Vaughn G. Draggoo, and Paul J. Wegner, "Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica", Applied Optics, Vol. 49, Issue 14, pp. 2606-2616, 2010.

Excerpt from the Proceedings of the 2013 COMSOL Conference in Rotterdam