Statistical Sensitivity Analysis of Li-ion Pouch Battery Cell Dimension and Design A. Samba^{1,2}, N.Omar¹, H. Gualous², Y. Firouz¹, O. Capron¹, M. Abdel Monem¹, J. Smekens¹, P. Van den Bossche¹, J. Van Mierlo¹

1. Vrije Universiteit Brussel, ETEC, Pleinlaan 2, Brussel, 1050, Belgium.

2. Université of Caen Basse Normandie, LUSAC, Rue Louis Aragon, 50130 Cherbourg, France.

Introduction:

- Large lithium-ion pouch cells in BEVs are subjected to several stress regimes,
- > Increase of the heat generation in the cell,
- > Heterogeneous heat distribution over the cell surface,
- Increase of the stress,
- Decrease of lifetime and performance,
- Need for optimized cell design,
- Assessment analysis of several battery cell design concept,

Figure 1. Configurations of several lithium-ion pouch cells

Figure 3. Comparisons of various configurations

Computational Methods

Multi-Scale and Multi-Dimensional (MSMD) modeling approaches have been investigated to simulate the thermal, current and voltage distributions over the cell.

Figure 5. Thermal distribution at the end of charging

Results:

Configuration 1

- > non-homogeneous distribution
- Wider tabs causes uniform thermal and voltage distribution

Configuration 2

> uniform thermal and voltage distribution

Figure 6. Voltage distribution at the end of charging **Conclusions:**

Extended analysis has been performed,

3.633

- Development of advanced simulation model,
- > Optimization of cell design,
- > Enhancement of battery performances,

Excerpt from the Proceedings of the 2013 COMSOL Conference in Rotterdam