Modelling of Coupled Mass and Heat Transfer and Expansion during Baking of Bread in a Mould

Vincent Nicolas ${ }^{1,2}$, Christophe Doursat², David Grenier¹, Typhaine Lucas ${ }^{1}$, Denis Flick ${ }^{2}$ 1.IRSTEA, 17 av. de Cucillé, F-35044 RENNES Cedex, France
2.AgroParisTech, 16 avenue Claude Bernard, F-75006 PARIS, France

Industrial problematic

High temperatures during bread baking deteriorates the mould. Numerical tools are used to find new processes of baking to preserve mould and bread quality.

Objectives

- have a better knowledge and understanding of the main phenomena and their relative weight occurring during the baking process
- modelling the baking step help to control and optimize the

Equation system

$\rho_{s}^{a} \frac{\partial X_{w l}}{\partial t}+\vec{\nabla} \cdot\left(\overrightarrow{\dot{m}}_{w l}+\overrightarrow{\dot{m}}_{w v v c}+\overrightarrow{\dot{m}}_{w v d}+\overrightarrow{\dot{m}}_{w v i i}+\rho_{s}^{a}\left(X_{w v}+X_{w l}\right) \vec{u}\right)=-\left(\left(X_{w l}+X_{w v}\right) \frac{\partial \rho_{s}^{a}}{\partial t}+\rho_{s}^{a} \frac{\partial X_{w v}}{\partial t}\right)$
$\rho_{s}^{a} \frac{\partial X_{c l}}{\partial t}+\vec{\nabla} \cdot\left(\overrightarrow{\dot{m}}_{c l}+\overrightarrow{\dot{m}}_{c v d}+\overrightarrow{\dot{m}}_{c v d i}+\left(\rho_{s}^{a} X_{c v}+\rho_{s}^{a} X_{c l}\right) \vec{u}\right)=-\left(\left(X_{c v}+X_{c l}\right) \frac{\partial \rho_{s}^{a}}{\partial t}+\rho_{s}^{a} \frac{\partial X_{c v}}{\partial t}\right)$
$\rho_{s}^{a} \frac{\partial X_{a}}{\partial t}+\vec{\nabla} \cdot\left(\overrightarrow{\dot{m}}_{a d}+\overrightarrow{\dot{m}}_{a d i}+\rho_{a}^{a} \vec{u}\right)=-X_{a} \frac{\partial \rho_{s}^{a}}{\partial t}$
Mass conservation (water,
$\rho_{s}^{i} \frac{\partial \varepsilon_{s}}{\partial t}+\vec{\nabla} \cdot\left(\rho_{s}^{a} \vec{u}\right)=0$

$\vec{\nabla} \cdot\left(\vec{\tau}+\left(P_{w v}+P_{c v}+P_{a v}-P_{0}\right) \vec{I}+\rho \vec{u} \vec{u}\right)=0$	Mechanical equilibrium
$\frac{\partial \hat{H}}{\partial t}+\vec{\nabla} \cdot\left(\dot{Q}+\dot{H}_{v c}+\dot{H}+\hat{H} \vec{u}\right)=0$	Energy conservation

Coupled with thermodynamical equilibrium for water and
carbon dioxide between liquid and vapour phase
Numerical model

- 2555 triangular elements
- The algebraic differential equations system use an ALE formulation taking into account of the bread expansion

Results

- good agreement with experimental data for temperature, mass loss and deformation
- crust and crumb section are well identified with the model

Conclusion

- the model implemented with COMSOL Multiphysics allows to simulate the baking of bread in a mould
- use the model to explore new heating modes (low temperature baking) in order to increase the mould lifetime

