Thermo-Fluid Dynamic Modeling of Cu Based Metallic Foams for Heat Exchanger Applications

Carlo A. Biffi^{*,1} and Ausonio Tuissi ¹

¹ National Research Council CNR, Institute for Energetics and Interphases, Unit of Lecco, C.so Promessi Sposi 29, 23900 Lecco (Italy).

*Corresponding author: carlo.biffi@ieni.cnr.it

Introduction: Cellular materials are challenging class of materials, able to offer almost unique combination in terms of morphology and material performances. In this work a Cu based foam (see Figure 1) was used as active element in a heat exchanger.

Figure 1. Representative samples of Cu based foam

Definition of the model: for the modeling of the heat exchanger (see Figure 2), different zones were considered:

- moist air at high temperature, as input;
- porous medium;
- air at lower temperature, as output;
- external tube in brass.

The following physics were considered:

- ☐ heat transfer in solids/fluid;
- ☐ free and porous media flow;
- ☐ transport of diluted species.

Figure 2. 2D axial-symmetric model of the heat exchanger

The moist air at high temperature (120° C), is modeled as a reactive term, function of the water concentration:

C= $0.05*p_{sat}(T_{inlet})/(R*T_{inlet})$ [mol/m³] where: p_{sat} is the saturation pressure, T_{inlet} is the inlet temperature, R is the universal

Results: the foam performances has been evaluated in terms of:

- ☐ fluid velocity;
- ☐ fluid pressure;
- ☐ solid and fluid temperatures;
- ☐ water concentration in the moist air.

Figure 3. Fluid velocity

Figure 4. Fluid pressure

The fluid velocity is decreased from 0.5 m/s to 0.25 m/s during its passage through the foam.

Figure 5. Solid and fluid temperatures

Figure 6. Water concentration

Conclusions: The fluid-dynamic field is strongly modified when the fluid passes through the foam. In fact, more than 60% of the fluid temperature is decreased across the foam.

This confirms how the heat transfer is favorable in the porous medium.

References:

- 1. A. Tuissi, P. Bassani, C.A. Biffi, Advances in Science and Technology, 78, 31-39 (2013).
- 2. S. Mavridou, G.C. Mavropoulos, D. Bouris, D.T. Hountalas, G. Bergeles, Applied Thermal Engineering, 30, 935–947 (2010).

gas constant.

Excerpt from the Proceedings of the 2013 COMSOL Conference in Rotterdam