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How? 

 Direct reaction of nitrogen and oxygen.  

 Investigate using cold plasma reactors with catalytic function [1].  

 Challenges: Very high dissociation energy of nitrogen (9.76 eV) 

and suppress reformation of elements. 
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Problem Definition  
Nitrogen will be fixed to produce nitric oxide; captivating benefits of 

plasma and catalysts synergetic effects in dielectric barrier discharge 

reactor.  

 

 

Basic understanding of the phenomena inside the DBD plasma 

reactor, e.g., for catalyst placing, micro-discharges, and energy. 

- Argon is used as model fluid. 

- 1D model in COMSOL multiphysics using Plasma module. 

- Solved following equations; 

1. Drift diffusion:   

 

 

2. Heavy species transport: 

 

 

3. Bulk gas flow transport: 

 

 

 

 

4. Plasma chemistry: Rate of reaction;  

 

5. Electrostatic field: Poisson’s equation; 

Results 

Variable Value Units 

Frequency 80 kHz 

Applied 
voltage 

-750sinwt V 

Din 0.028 m 

Length 0.17 m 

Conclusions  
COMSOL simulations can be an effective tool to get useful 

insights in plasma processes.  

 Best possible catalyst arrangement: Information on active 

species concentration distribution inside plasma region to 

utilized the plasma activated species. 

 Micro-discharge phenomena: Simulations could capture this 

in DBD reactor. 

 Energy transferred: Enabled to calculate the actual energy 

transferred to plasma region. 

 

Future direction: 

 Simulating molecular gases (N2 and O2) and reaction between 

these gases to produce products (NO and NO2) 
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Figure 5. Power consumption 

Figure 1. What and why nitrogen fixation [2] 

Global Nitrogen fixation (MtN2/year). 
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Figure 2. Reactor geometry simulated. 
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Figure 3. Mass fraction of Ars 

Table 1. Input variables 
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Figure 4. Electron temperature 
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