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s+ Introduction

In burner with small thermal power evaporates the fuel in a porous material. To
simulate this complex process on a macroscopic scale, the multiphase mixture
model Is iImplemented in COMSOL.

In Figure 1 we illustrate a simplified model for the computation.
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Fig. 1: 1D Model

o Two-Phase Mixture Model

The two-phase mixture model (TPMM) introduced by Wang et al [1] is based on
the assumption of the local thermal equilibrium (LTE), i.e. T.=T;. Because of the
assumption generates the model a numerical isolation domain. This variant is a
one-equation model.
The second variant of this model is a two-equation model, which is presented by
Shi et al. [2]. This variant drops the assumption of the local thermal equilibrium
and is called the local thermal non-equilibrium model (LTNE).

V-(pu) =0 (Mass conversation)

u=-— % (Vp — prg) (Darcy‘s Law)

V-(yyuH) =V -{I,WH)+ V- (f KAs:fg g) (Energy-equation, LTE)
V-(yyuH) =V -{I,/WVH)+ V- (f KASffg g) (Energy-equation fluid, LTNE)
qsf = V- (VksjeffVTS) (Energy-equation solid, LTNE)

Tab. 1. Conservation equations of TPMM

Loser 1 MATLAB FV-Code
Loser 2 COMSOL FE-Code

Tab. 2: Self written solver for the TPMM

 Implementation and Results
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Tab. 3: Boundary Conditions
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We implemented the TPMM In Matlab L 00E-07
and COMSOL (Tab.2). In Comsol we 1,00E-08 @
used the PDE-Interface and the Darcy’s 1,00E-09 E
Law module to Iimplement the L00E-10 &
conservation equations (Tab.1). 1.00E-11 E
A main problem in the implementation iggii 5
process was the diffusion coefficient. ooe.is E
Because of the phase change the L 00E-15
coefficient has great jumps at the 1.00E-16
boundaries between the two-phase 1,00E-17
domain and the liquid/gas domain (cf. Fig.2: Diffusions Coefficient
Fig 2).
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Fig. 3: Comparison of the fluid temperature:

LTE vs. LTNE
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Fig. 6: 2D Model
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Fig. 7: Phase velocity: A) liquid and
B) gaseous

s+ Conclusion and Future Work

The Two-Phase Mixture Model by Wang (LTE) and Shi (LTNE) were implemented in the
COMSOL environment. The model was used to compute simple one-dimensional
problems. In figure 6 first results for a two-dimensional problem are displayed.

The next steps to taken are a experimental validation. Further more we need to
Improve the two-dimensional model. To consider non-constant fluid-temperature in the
two-phase domain, the model of Wei et al [3] is a promising option.
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