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Abstract: In this study we investigate the heat 
and mass transfer in a porous media with phase 
change. The liquid fluid is injected from one side 
and heated from the other side, where it leaves 
the porous material in a gaseous state. Dominant 
forces are capillary interactions and two-phase 
heat conduction. 

To model the process we use a two-phase 
mixture model on a macroscopic scale. This 
model is presented in two versions. The first 
version is a one-equation model for energy 
conservation, while the second is a two-equation 
model. The versions are implemented in 
COMSOL and then compared with other results 
in the literature. A parameter study is done for 
the second model.  
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1. Introduction 
 

In many technical applications two-phase 
flow with phase change is of importance. In 
burner with small thermal output the fuel is 
injected in a liquid state. For an optimal 
combustion the fuel should leave the porous 
material in a gaseous state. In other cases such as 
transpiration cooling, we consider a phase 
change for cooling processes in porous media. 
We have to simulate the process of the 
evaporation to predict the critical heat flux at the 
surface, at which the fluid is only in a gaseous 
state. This state known as dryout is an important 
characteristic for technical design aspects.  

To simulate these processes, we implement a 
two-phase mixture model (TPMM), first 
mentioned by Wang und Beckermann [1], in 
COMSOL. This model uses the simplification of 
a local thermal equilibrium (LTE) between the 
solid matrix and the fluid. Since this one-
equation model uses strong assumptions, we also 
implement an advanced version, which was 
presented by Shi et al. [2]. This version drops the 
assumption of the local thermal equilibrium. A 
qualitative comparison between the two versions 
is presented.  

In the first part of this paper, we present the 
governing equations. The numerical 

implementation and the treated problem are 
described in the following part. The results of the 
computations and the comparison with results 
from the literature are done in the next section. 
In the last part of the paper we give a future 
prospect. 
 
2. Theory and Governing Equations 
 

In this study we consider a homogenous and 
isotropic porous medium. The one-equation two-
Phase Mixture Model is based on the assumption 
of a local thermal equilibrium (LTE), i.e. the 
temperature of the solid and fluid phases is the 
same. The expansion of this version is a two-
equation model, which is called the local thermal 
non-equilibrium model (LTNE). The two 
versions are only different in the number of 
energy equations. 

These models use mixture variables to reduce 
the number of PDEs. Mixture variables such as 
mixture density ρ and mixture velocity vector u, 
are denoted without index. With the help of a 
diffusive mass flux we can obtain the flow 
characteristics of the individual phases. 
 
2.1 Conservation of Mass 

 
With introduction of the mixture quantities 

(see [1],[2]) the conservation of mass is defined, 
with the porosity ε, as  

𝜀
𝜕𝜌
𝜕𝑡

+ 𝛻 ⋅ (𝜌𝑢) = 0. (1) 

 
2.2 Momentum Conservation 
 

In this model we use Darcy’s Law 

𝑢 =  −
𝐾
𝜇

 (𝛻𝑝 − 𝜌𝑘𝒈) (2) 

for the momentum conservation. The dynamic 
viscosity μ and the pressure p are also mixture 
quantities.  
 
2.3 Diffusive Mass Flux 
 

The diffusive mass flux j connects the 
mixture mean velocity with the velocity of the 
individual phases. 

𝜌𝑙𝒖𝑙  =  𝜆𝑙𝜌𝒖 + 𝒋 (3) 



 

𝜌𝑣𝒖𝑣 =  𝜆𝑣𝜌𝒖 − 𝒋 (4) 
Wang and Beckermann introduced the 

diffusive flux as  

𝒋 = 𝐷(𝑠)∇𝑠 + 𝑓(𝑠)
𝐾Δ𝜌
𝜈𝑣

𝒈. (5) 

In this definition  f is the hindrance function 
for phase migration and separation and D(s) is 
the capillary diffusion coefficient as a function of 
liquid saturation. 
 
2.4 Energy Conservation 
 

As we mentioned above, the energy 
equations are different for the two versions. For 
the numerical handling, Wang presented a 
pseudo-mixture enthalpy H. For further details 
the reader is referred to ref. [3]. 

 First, we present the local thermal 
equilibrium version. The energy conservation is 
defined as  

𝛻 ⋅ (𝛾ℎ𝒖𝐻) = ∇ ⋅ (𝛤ℎ∇𝐻) + 

∇ ⋅ �𝑓
𝐾Δ𝜌ℎ𝑓𝑔
𝜈𝑣

 𝒈�, (6) 

where hfg  is the enthalpy of evaporation, Γh  is 
the effective diffusion coefficient and γh is a 
corrector coefficient. For detailed information 
we refer to ref. [3]. 

Second, the local thermal non-equilibrium 
version consists of two energy equations. The 
first equation is similar to equation (6). It is the 
energy equation of the fluid: 

𝛻 ⋅ (𝛾ℎ𝒖𝐻) = ∇ ⋅ (𝛤ℎ∇𝐻) + 

∇ ⋅ �𝑓
𝐾Δ𝜌ℎ𝑓𝑔
𝜈𝑣

 𝒈� + 𝑞̇𝑠𝑓 , (7) 

The equation for the solid matrix is the 
classic conduction of heat equation 

𝛻 ⋅ �𝑘𝑠eff∇𝑇𝑠� = 𝑞̇𝑠𝑓 , (8) 
where 𝑘𝑠eff is the effective heat conductance. 
The source term 𝑞̇𝑠𝑓 describes the heat transfer 
between fluid and solid matrix and varies for 
each domain (liquid, two-phase-domain and gas). 
 
3. Implementation in COMSOL 
 

The purpose of this work is to present a 
useful tool in COMSOL to simulate arbitrary 
two-phase flows with heat transfer. The 
introduced model can be implemented in 
different ways. We used the Darcy’s Law 
Module and the coefficient form of the PDE 
Interfaces to implement the rest of the equations. 

To validate the implemented model we 
compare the results with ref. [2] and the 
analytical temperature at the outlet. This 
validation is done for the one-dimensional 
findings.  
 
3.1 Boundary Conditions 
 

The principal set-up is shown in figure 1. A 
continuous mass flux flows against the 
gravitation from the bottom to the top of the 
domain. The velocity at the inlet is defined by: 

𝑢𝑖𝑛 =
𝑚̇𝑖𝑛

𝜌𝑙
. (9) 

  

 
Figure 1. Sketch of the one-dimensional problem 
 
 

The pseudo-mixture enthalpy at the inlet is 
defined by the inlet-temperature 

𝐻(𝑦 = 0) =  𝜌𝑙�𝑐𝑙𝑇𝑖𝑛 − 2ℎ𝑣sat�. (10) 
For the local thermal non-equilibrium version  
the solid temperature at the inlet corresponds to 
𝑇𝑖𝑛 . 

During the crossing the fluid is heated from 
the top by a heat source 𝑄̇𝑖𝑛 and starts to boil. 
The Neumann boundary condition for the 
enthalpy at exit is given by 

Γℎ
d𝐻
d𝑦

(𝑦 = 𝑙) = 𝑄̇𝑖𝑛 − 𝑓
𝐾Δ𝜌ℎ𝑓𝑔
𝜈𝑣

𝑔. (11) 

In case of the local thermal non-equilibrium 
version the heat is delivered in  the solid 
material, i.e. 𝑄̇𝑖𝑛 = 0 in equation (11). The 
boundary condition for the solid energy equation 
is then defined as 

𝑘𝑠eff
d𝑇𝑠
d𝑦

(𝑦 = 𝑙) = 𝑄̇𝑖𝑛 . (12) 

 
If the heat source is large enough, dryout will 

be reached. The pressure has the constant value 
𝑝𝑜𝑢𝑡  at the outlet. 



 

 
3.2 Challenges of the Implementation 
 

The main challenge of simulating problems 
with phase change is the jump in the fluid 
characteristics at the phase transition. Because of 
the changing characteristics the model is 
numerical unstable. The effective diffusion 
coefficient Γℎ, shown in figure 8, degenerates at 
the phase boundaries, denoted by 𝑠 = 0 
(condensation front) and 𝑠 = 1 (evaporation 
front). 

To avoid this problem we smoothed the 
function with the smoothing function of 
COMSOL. By using a small relative smoothing 
length, the effect on the result was very slightly 
(see figure 9). 
 
4. Simulation and results 
 

This section is separated in three parts. First, 
we present the results of the local thermal 
equilibrium and the local thermal non-
equilibrium model and compare the outcomes 
with each other. Second, we compare the 
solutions of the local thermal equilibrium model 
with the results of Shi et al. [2]. Finally, we 
check the influence of different parameters on 
the result for the second model. 

The coolant respectively fuel in our cases is 
water. The solid material is steel. 

 
4.1 LTE and LTNE 
 

The results of the simulations are presented 
in figure 2, where the temperatures are displayed. 
The simulation was done for a heating source of 
𝑄̇𝑖𝑛 = 1.5𝑒6 𝑊

𝑚2 and a mass flux of             

 𝑚̇𝑖𝑛 = 0.5 𝑘𝑔
𝑚2𝑠

.  
The temperature at the outlet is for each 

version roughly the same. This is to be expected, 
because both versions are based on the same 
theoretical background. We can compute an 
analytic temperature with the following equation: 

 

𝑇 analytic

=  

⎩
⎪
⎨

⎪
⎧ 𝑇in +

𝑄̇𝑖𝑛
𝑚̇𝑖𝑛𝑐𝑙

if 𝑄̇𝑖𝑛 ≤  𝑄̇Boil

𝑇sat if  𝑄̇Boil < 𝑄̇𝑖𝑛 ≤ 𝑄̇Dryout

𝑇sat +
𝑄̇𝑖𝑛 − 𝑄̇Dryout

𝑚̇𝑖𝑛𝑐𝑣
if 𝑄̇Dry ≤ 𝑄̇in

 

 
The heat constants are defined by  

𝑄̇Boil = 𝑚̇𝑖𝑛𝑐𝑙(𝑇sat − 𝑇in) (13) 
and  

𝑄̇Dryout =   𝑄̇Boil + ℎ𝑓𝑔. (14) 
However, the distributions are different. The 

two-phase domain of the local thermal 
equilibrium is just one third of that from the 
local thermal non equilibrium version. The 
reason for this observation is because of the 
assumption of a thermal equilibrium. This leads 
to the constant temperature 𝑇sat of the solid and 
fluid within the two-phase domain, i.e. the heat 
transfer in the solid matrix is zero. We have an 
artificial thermal insulation. 

The local thermal non-equilibrium avoids 
this problem, by using a second energy equation 
for the solid material. Thus, temperature gradient 
for the solid is unequal zero and heat can be 
conducted in the two-phase region. 

 
4.2 Comparison with Shi 
 

Shi et al. [2] use also water as the coolant and 
steel as the solid matrix. In figure 3 the results of 
Shi and the results achieved of COMSOL are 
displayed. These results are computed for 
different mass fluxes and a heat flux of 𝑄̇𝑖𝑛 =
1𝑒6 𝑊

𝑚2. 
Our input temperature differs from the input 

temperature of Shi et al. This difference has no 
big influence on the results, which we checked 
for a test case (see figure 10). The results are 
comparable. 

The temperature at the outlet is almost the 
same. And also the qualitative shift of regimes is 
for both results the same. If we increase the mass 
influx the temperature at the outlet will decrease 
and the location of the two-phase domain will be 
pushed upstream.  

The main difference in the outcomes is the 
length of the two-phase domain. The results, 
computed by Shi, own a longer two-phase 
region. COMSOL uses the finite element 



 

method, while Shi et al. computes the results 
with a finite volume method. 

The results of the COMSOL solver are 
confirmed by another self-written solver. A finite 
volume method, implemented in Matlab, 
delivered the same results in terms of 
temperature distribution. The discrepancy is not 
caused by the different solvers. 

As we mentioned above the different inlet 
temperature is not the source for the discrepancy. 

To estimate the quality of the solvers, we 
compare the temperature at the outlet with the 
analytical temperature 𝑇analytic 

𝑟 =  
𝑇analytic
𝑇out

. (15) 

The Matlab and COMSOL solver provide the 
better performance (see table 1).  
 Shi [2] Matlab COMSOL 
BC 1 0,94 0,99 0,99 
BC 2 0,98 1 1 
Table 1. Coefficient r (eq. (15)) 
 
4.3 Parameter Variation 
 

In this section we present two interesting 
outcomes. First, we show the influence of the 
coolant on the result and second, the dependence 
of the relative permeability on the saturation. 
In figure 4 the results for water respectively 
ethanol are displayed. Because of the smaller 
enthalpy of evaporation for ethanol the two-
phase domain is shorter and the temperature at 
the exit is much higher. 

There is a strong connection between the 
relative permeability krl and the length of the 
two-phase domain, which we can see in figure 5. 
Power-law is used for krl(s). The higher the 
power of the saturation is, the smaller is the two-
phase domain. A small power pushes the two-
phase domain upstream. 
 
5. Discussion and future prospect 
 

In the previous section we presented the 
results and saw, that the different models give 
qualitative the same outcomes. The local thermal 
equilibrium version delivers roughly the same 
temperature at the outlet as the local thermal 
non-equilibrium version. Because of the lower 
computational cost, this version is good for 
qualitative analyses. For more realistic 

temperature distributions, the local thermal non-
equilibrium is the better choice.  

In this work we revealed the possibility to 
implement the two-phase mixture model in 
COMSOL. 

 
 

 

 
Figure 2. Results of the local thermal equilibrium 
(LTE) and the local thermal non-equilibrium (LTNE) 
 
5.1 Future Research Points 
 
The future work at this topic will concentrate on 
three points. First, a two-dimensional model will 
be implemented. In figures 6 and 7 the result of a 
computation for two dimensions is presented. 
For this computation, we used large relative 
smoothing length and gravitational aspects were 
neglected. 

The second research point has the aim to 
drop the assumption of a constant fluid 
temperature in the two-phase domain. A good 
approach provides the model of Wei et al. [4]. 
This model is based on the Gibbs free energy. 
This energy has to be equal for the liquid and 
gaseous state within the two-phase domain.  

Last but not least, we need to verify the 
model with experimental results.  
 



 

Figure 3. Comparison between Shi et al. [2] (A) and 
the COMSOL solver (B) 

 
 

 
Figure 4. Comparison between water and ethanol as 
coolant 
 

 Figure 5. Results for different relative permeabilities  
 

  
Figure 6. Two-dimensional setting of the problem 
 

 
Figure 7. Saturation distribution 
 



 

 
Figure 8. Diffusion Coefficient with different 
smoothing degrees 

 
Figure 9. Saturation distribution for different 
smoothing degrees 

 

 
Figure 10. Different inlet temperatures 
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