Multiphysics Modelling of Sound Absorption in Rigid Porous Media Based on Periodic Representations of Their Microstructural Geometry

COMSOL CONFERENCE ROTTERDAM2013

Tomasz G. Zieliński

Institute of Fundamental Technological Research Polish Academy of Sciences • IPPT PAN • Warsaw, Poland

COMSOL International Conference – Rotterdam 2013 23rd-25th of October 2013 • Rotterdam, Netherlands

Outline

1 Macroscopic model

- Parameters and effective functions
- Acoustical characteristics

2 Multi-scale approach

- Micro-scale level
- Hybrid approach

3 Examples

- Porous ceramics
- Freely-packed spherules

4 Conclusions

Outline

1 Macroscopic model

- Parameters and effective functions
- Acoustical characteristics
- 2 Multi-scale approach
 - Micro-scale level
 - Hybrid approach

3 Examples

- Porous ceramics
- Freely-packed spherules

4 Conclusions

Acoustics of porous media with rigid frame

Fluid-equivalent approach

An effective fluid is substituted for a porous medium. It is dispersive and substantially different from the fluid in pores.

Requirements: (1) open-cell porosity, (2) rigid (motionless) skeleton, (3) wavelengths significantly bigger than the characteristic size of pores.

Helmholtz equation of linear acoustics:

$$\omega^2 \tilde{p} + c^2 \Delta \tilde{p} = 0, \qquad c^2 = \frac{K}{\rho}$$

 \tilde{p} – the amplitude of acoustic pressure, $~\omega$ – the angular frequency, $c,~\rho,~K$ – the speed of sound, density and bulk modulus of medium

Effective density and bulk modulus for a porous medium:

$$\rho(\omega) = \rho_{\rm f} \, \alpha(\omega), \qquad K(\omega) = \frac{P_0}{1 - \frac{\gamma - 1}{\gamma \, \alpha'(\omega)}}$$

 $\rho_{\rm f}$ – the density of fluid in pores, γ – the heat capacity ratio of fluid in pores, P_0 – the ambient mean pressure, $\alpha(\omega)$, $\alpha'(\omega)$ – the **dynamic** (visco-inertial) tortuosity and "thermal tortuosity"

Examples

Model parameters

Johnson-Champoux-Allard model (simplified)

$$\alpha(\omega) = \alpha_{\infty} + \frac{\nu}{i\omega} \frac{\phi}{k_0} \sqrt{\frac{i\omega}{\nu} \left(\frac{2\alpha_{\infty}k_0}{\Lambda\phi}\right)^2 + 1}, \quad \alpha'(\omega) = 1 + \frac{\nu'}{i\omega} \frac{\phi}{k'_0} \sqrt{\frac{i\omega}{\nu'} \left(\frac{2k'_0}{\Lambda'\phi}\right)^2 + 1}$$

 $\phi, \alpha_{\infty}, k_0, k'_0, \Lambda, \Lambda'$ – purely geometric parameters of the skeleton $\nu = \mu/\rho_{\rm f}$ – the kinematic viscosity of pore-fluid (μ – the dynamic viscosity) $\nu' = \nu/{\rm Pr}$ (Pr – the Prandtl number of pore-fluid)

- Parameters of the fluid in pores (the density ρ_f, heat capacity ratio γ, viscosity μ, and Prandtl number Pr) and the ambient mean pressure P₀
- Geometric parameters of the skeleton of porous medium:

Symbol	Unit	Parameter
ϕ	[-]	porosity
α_{∞}	[-]	tortuosity
k_0	[m ²]	(static) viscous permeability
k'_0	[m ²]	"thermal permeability"
Λ	[m]	viscous characteristic length
Λ'	[m]	thermal characteristic length

Examples

Conclusions

Impedance and absorption of a porous layer

Impedance tube for material testing

Surface acoustic impedance:

$$Z(\omega) = \sqrt{\rho K} \frac{\exp(2i\omega\ell\sqrt{\rho/K}) + 1}{\exp(2i\omega\ell\sqrt{\rho/K}) - 1} = -i\sqrt{\rho K}\cot\left(\omega\ell\sqrt{\rho/K}\right)$$

Acoustic absorption and reflection coefficients:

$$A(\omega) = 1 - |R(\omega)|^2$$
, where $R(\omega) = \frac{Z(\omega) - Z_f}{Z(\omega) + Z_f}$
(Z_f – the characteristic impedance of pore-fluid)

Outline

1 Macroscopic model

- Parameters and effective functions
- Acoustical characteristics

2 Multi-scale approach

- Micro-scale level
- Hybrid approach

3 Examples

- Porous ceramics
- Freely-packed spherules

4 Conclusions

Small-velocity flow in a porous medium

Small fluctuations

The **velocity field** <u>v</u> describes *small* fluctuations of fluid particles around their initial (motionless) equilibrium state.

Fluid density, pressure and temperature are decomposed as follows:

$$\varrho = \varrho_0 + \tilde{\varrho}, \qquad p = p_0 + \tilde{p}, \qquad T = T_0 + \tilde{T}$$

 $\tilde{\varrho}, \tilde{p}, \tilde{T}$ – small fluctuations of density, pressure, and temperature, respectively, around their constant, equilibrium values: ϱ_0, p_0 , and T_0 .

Hybrid approach

Micro-scale level: Solve 3 steady-state BVPs on the micro-scale:

1 Stokes flow (steady, incompressible viscous flow) – then calculate:

- static viscous permeability
- viscous tortuosity at 0 Hz
- 2 Steady heat transfer then calculate:
 - static thermal permeability
 - thermal tortuosity at 0 Hz
- **3 Laplace problem** then calculate:
 - **parameter of tortuosity (tortuosity at** ∞ Hz)
 - viscous characteristic length

The **thermal characteristic length** and the **porosity** are determined directly from the **micro-geometry**. The thermal length is computed as the ratio of the doubled volume of fluid domain to the surface of skeleton walls.

Macro-scale level: Use the parameters calculated (averaged) from microstructure for the Johnson-Allard formulas to compute the dynamic tortuosity functions, and then the dynamic permeability functions, and eventually, the effective density and bulk modulus.

Outline

1 Macroscopic model

- Parameters and effective functions
- Acoustical characteristics
- 2 Multi-scale approach
 - Micro-scale level
 - Hybrid approach

3 Examples

- Porous ceramics
- Freely-packed spherules

4 Conclusions

Periodic skeleton cells with porosity 90%

- Both RVEs have **open-cell porosity of 90%**.
- Both RVEs are cubic, periodic and "isotropic" (identical with respect to three mutually-perpendicular directions).

- 7 pores per cell
- 3 types of pores

- 8 pores per cell
- 4 types of pores

Periodic skeleton cells with porosity 90%

- Both RVEs have **open-cell porosity of 90%**.
- Both RVEs are cubic, periodic and "isotropic" (identical with respect to three mutually-perpendicular directions).

- 7 pores per cell
 2 types of percel
- 3 types of pores

- 8 pores per cell
- 4 types of pores

Incompressible flow through the periodic cell

- No-slip boundary conditions on the skeleton boundaries
- Periodic boundary conditions on the relevant pairs of cell faces
- The local flow permeability ('scaled velocity') field is computed in the fluid domain

Viscous permeability

The static, macroscopic **permeability**: $k_0 = 7.50 \times 10^{-10} \text{ m}^2$ is obtained as the **fluid-domain average** of the computed field. It is consistent with the value: $k_0 = 7.13 \times 10^{-10} \text{ m}^2$

found using the **inverse identification** procedure.

Testing freely-packed layers of spherules

Spherule: • diameter = 5.9 mm • volume = 107.54 mm³ • mass = 0.3 g

- Large Tube (diameter = 100 mm) –
 Frequency range = 50 Hz to 1600 Hz
- Medium Tube (diameter = 63.5 mm) \rightarrow Frequency range = 100 Hz to 3200 Hz
- Small Tube (diameter = 29 mm)
 Frequency range = 500 Hz to 6400 Hz

Examples

Conclusions

Testing freely-packed layers of spherules

Spherule: • diameter = 5.9 mm • volume = 107.54 mm³ • mass = 0.3 g

Large Tube (diameter = 100 mm)

Layer:	L-41
Height [mm]:	41
No. of spherules:	1840
Porosity:	app. 39%

Medium Tube (diameter = 63.5 mm)

Layer:	M-41	M-106
Height [mm]:	41	106
No. of spherules:	708	1840
Porosity:	app. 41%	

Small Tube (diameter = 29 mm)

Layer:	S-41	S-106	S-200
Height [mm]:	41	106	200
No. of spherules:	147	380	710
Porosity:		app. 42%	6

Macroscopic model

Multi-scale approach

Examples

Conclusions

Periodic sphere packings and RVEs

SC

simple cubic

BCC body-centered cubic FCC face-centered cubic

Examples

Conclusions

Periodic sphere packings and RVEs

edge length* [mm]: 5.90

* for the sphere diameter 5.9 mm

8.34

Macroscopic model

Multi-scale approach

Examples

Conclusions

Periodic sphere packings and RVEs

SC	BCC	FCC
simple cubic	body-centered cubic	face-centered cubic

Packing type:	SC	BCC	FCC
number of spheres:	1	2	4
edge to diameter ratio:	1	$\frac{2}{\sqrt{3}} = 1.155$	$\sqrt{2} = 1.414$
edge length* [mm]:	5.90	6.81	8.34
solid fraction:	$\frac{\pi}{6} = 0.524$	$\frac{\pi\sqrt{3}}{8} = 0.680$	$\frac{\pi\sqrt{2}}{6} = 0.740$
porosity [%]:	47.6	32.0	26.0

* for the sphere diameter 5.9 mm

Macroscopic model

Multi-scale approach

Examples

Conclusions

Periodic sphere packings and RVEs (porosity 42%)

SC	BCC	FCC
simple cubic	body-centered cubic	face-centered cubic

Packing type:	SC _(42%)	BCC _(42%)	FCC _(42%)	
number of spheres:	1	2	4	
edge to diameter ratio:	0.960	1.218	1.534	
edge length* [mm]:	5.66	7.19	9.05	
By shifting spheres the porosity is set to 42%.				
This is the actual porosity of loosely-packed layers of spherules.				

* for the sphere diameter 5.9 mm

Periodic sphere packings and RVEs (porosity 42%)

SC

BCC

simple cubic

body-centered cubic

FCC

face-centered cubic

Packing type:	SC(42%)	BCC _(42%)	FCC _(42%)
permeability [m ²]:	5.46×10^{-8}	4.52×10^{-8}	3.93×10^{-8}
thermal permeability [m ²]:	1.46×10^{-7}	8.03×10^{-8}	8.34×10^{-8}
tortuosity (at ∞ Hz):	1.5263	1.3245	1.3191
tortuosity at 0 Hz:	2.3052	1.9343	1.8371
thermal tortuosity at 0 Hz:	1.4438	1.3141	1.5238
viscous length [mm]:	0.9900	1.1054	1.1197
thermal length [mm]:	1.5573	1.4268	1.4230

Parameters for Johnson-Champoux-Allard model

Parameters for Johnson-Champoux-Allard model

Examples

Parameters for Johnson-Champoux-Allard model

Outline

1 Macroscopic model

- Parameters and effective functions
- Acoustical characteristics
- 2 Multi-scale approach
 - Micro-scale level
 - Hybrid approach

3 Examples

- Porous ceramics
- Freely-packed spherules

4 Conclusions

Conclusions

Modelling in COMSOL Multiphysics

- Periodic boundary conditions
- Symbolic expressions and equation-based modelling
- LiveLink to MATLAB

Microstructure representations

- Larger RVEs (i.e., containing more pores, spheres, or fibres, etc.) seem to be necessary
- Random generation of periodic cells should easily yield better representation
- Periodicity conditions on lateral faces may be substituted by Neumann-like conditions

Acknowledgements

This work was carried out in part using computing resources of the "GRAFEN" supercomputing cluster at the IPPT PAN.

The author wishes to express his sincere gratitude to Dr. MAREK POTOCZEK from Rzeszów University of Technology for providing the samples of porous ceramics.

Financial support of Structural Funds in the Operational Programme – Innovative Economy (IE OP) financed from the European Regional Development Fund – Project "Modern Material Technologies in Aerospace Industry", No. POIG.01.01.02-00-015/08-00 is gratefully acknowledged.

