FEM based studies of a Mg/AI hybrid component joint regarding corrosion prediction

Dr. Daniel Höche Helmholtz-Zentrum Geesthacht

24th October 2013

Centre for Materials and Coastal Research

Comsol History

Centre for Materials and Coastal Research

Year	Reference	Image
2007	 D. Höche, M. Shinn, J. Kaspar, G. Rapin and P. Schaaf, Laser pulse structure dependent texture of FEL synthesized TiN_x coatings; Journal of Physics D: Applied Physics, Vol. 40(3): 818-825, 2007. D. Höche, G. Rapin and P. Schaaf, FEM simulation of the laser plasma interaction during laser nitriding of titanium; Applied Surface Science, Vol. 254(4): 888-892, 2007. 	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $
2008	P. Schaaf C. Lange, V. Drescher, J. Wilden, D. Höche and H. Schikora, Laser clad surfaces for shark skin effect by high temperature activation; Surface and Coatings Technology, Vol. 203 (5-7): 470-475, 2008.	10 μm 1373 K
2009	D. Höche, M. Shinn, S. Müller, G. Rapin and P. Schaaf, Marangoni convection during free electron laser nitriding of titanium; Metallurgical Material Transaction B, Vol. 40(4): 497-507, 2009.	
2012	D. Höche and J. Isakovic, Level-set modeling of galvanic corrosion of magnesium; Mg2012 conference in Vancouver, Symposium Simulation and Modeling, 0813.07.2012, Proceedings 2012.	
2013	 S. Klink, D. Höche, F. La Mantia, W. Schuhmann; FEM modelling of a coaxial three-electrode test cell for electrochemical impedance spectroscopy in lithium ion batteries, Journal of Power Sources, Vol. 240: 273-280, 2013 D. Höche and J. Isakovic; Mikrogalvanische Korrosion am Magnesium-Aluminium System - Detaillierte elektrochemische Einblicke mittels FEM - Simulationen, Chemie Ingenieur Technik, online, 2013. D. Höche; Towards the simulation based design of Mg/Al hybrid component joints in terms of corrosion prevention, Proceedings EuroCORR, Estoril, 2013. 	WE WE We We We We We We We We We We
daniel.hoech	e@hzg.de	A - street

Corrosion in multi-material design

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

- galvanic corrosion (AA, Mg, Steel, CFK)
- under paint corrosion
- crevice corrosion (gap, edge, scratch)
- localised corrosion / filiform corrosion

Anti-corrosive lightweight design needs:

- Constructive corrosion protection
 - component selection (non-metallic)
 - avoiding galvanic contacts
 - spacer distances etc.
- Active corrosion protection
 - optimized coating systems (hybrid)
 - superior pre-treatments
- Corrosion resistant materials / alloys

H. Schreckenberger, P. Izquierdo, S. G. Klose, **D. Höche** et.al.; Materialwissenschaft und Werkstofftechnik, 2010.

P. Izquierdo, S.G. Klose, D. Höche, et.al.; World Magnesium Conference. Hongkong, 2010.

by Tucker GmbH

Application on engineering tasks

- → Assisting engineers in Multi-Material-Design (combination of different materials) under corrosion protection aspects
- → Corrosion prediction for Multi-Material-Joints (welds, rivets, clinches) = minimising the need of corrosion protection action (coatings, etc.)
- \rightarrow Tailoring of various properties like spacing distances

Most common advantages

- \rightarrow Reduction of development expenses and periods
- \rightarrow Improved planning ability due to tailored properties
- \rightarrow Simulation based safeguarding of corrosion protection action

Objective:

Computer-Aided Engineering (CAE) in terms of corrosion protection

Anti-corrosive simulation based design

1. Challenge \rightarrow the model development chain scientific aspects materials state (as received) • welds (FSW, Laser, selfpierce Joining technology arc) clinches, rivets, scratches, artefacts • punch rivet adhesive Impurities ۲ galvanic corrosion • sheets, casts, 2 sheets and Geometry crevices, spacers, crevices • a rivet exposed area under paint corrosion electrical properties • bulk materials, AA, bulk Mg and Materials M1. M2. (conductivity) Mg alloys, steels, Al sheet, Al Mx CFK... rivet electrochemical response ۲ interface chemistry • bare, cleaned, Faraday reaction • Surface state etched. conversion bare coated, top coat passivation, layer growth ion concentration, pH ۲ Environmental liquid couluum. thin conductivity thin film • Exposure film, flow, splashes transport mechanism

Chose the **correct** interdisciplinary approach including the correct physics / chemistry

Self-pierce punch rivet model problem (Al in Mg)

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

- Try to figure out **all** aspects \rightarrow develop the model starting with most "weighted" issue.
- Keep it as easy as possible (checking requirements in context to limitations and assumptions)

Most "weighted" problem

- ratio of cathode area to anode area / area rule
- galvanic corrosion will become more severe over time once it is initiated.
- affected zone can be relatively large and galvanic corrosion may be caused by a **remote cathode metal** (spacing aspects).
- avoid that the anode is electrically connected to the cathode (not possible).
- relative positions of electrodes → corrosion products from the Mg anode can be transferred to the cathode, corrosion could be slightly reduced through an "alkalisation effect". (being simulated)
- Corrosion products from the cathode on the Mg surface (e.g. by convection) leading to a "**passivation**" or "**poisoning**" effect, which could either slightly, ameliorates or deteriorates the galvanic corrosion. (very important)
- A "shortcut" effect can be caused by the accumulation of corrosion products
 → accelerating galvanic corrosion unexpectedly at a remote area.

G. Song, B. Johannesson, S. Hapugoda, D. StJohn, Corrosion Science. 46 (2004) 955-977.

Mathematical approach

Nernst:

Faraday:

Specimens:							
(to be extended)							

species	Mg ²⁺	OH-	H+	Na⁺	Cl-	O ₂
D [m²/s]*10 ⁻⁹	0.71	5.27	9.31	1.33	5.27	1.98
C_0 [mol/m ³]	0	10-4	10-4	42	42	0.233

to be used: (in 4.2a)

- Tertiary Current Distribution, Nernst-Planck Interface
 - modified boundary conditions (weak form) to include the reduced flux due to layer growth
- Surface Reactions Interface
- Deformed Geometry and Moving Mesh Interface (ALE)
- Mathematics Interface
 - 3 ODE's for surface coverage, layer thickness and porosity

Boundary conditions - electrode response

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

daniel.hoeche@hzg.de

Boundary conditions - surface coverage

Assumptions and limitations

- Al is non-corroding (anodic branch is neglected)
- dilute solution theory is applicable
- precipitates do not dissolve
- hydroxide formation occurs at the interface
- limited number of chemical specimens and reaction products
- non-technical alloys
- without localised effects (pitting / Cl⁻)
-

Results – checking the model

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Results – Geometry aspects

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

first results without reducing flux:

e.g. different head shape:

minimizing the corrosion current density:

1

0.8

0.6

0.4

0.2

0

0.002

0.004

0.006

boundary position

0.008

0.01

Results – Possible studies

Surface treatments and coatings have to be tackled separately

daniel.hoeche@hzg.de

Need of further extensions

- addition of further chemical specimens
- improved layer model including the MgO aspects
- predicting localised corrosion issues
- correlation to functionality (e.g. strength, stiffness)
- Al activity has to be taken into account especially at high pH values (>12 hydroxide species)

•

beside the previous explained aspects by Song et.al:

- sharp edges and gradients should be avoided due to local "critical" increases in the current density arising in discontinues anodic "dissolution" currents
- the relative position of the cathode should be "below" the anode to force precipitation of chemical products → decrease in the cathodic current
- θ=1 for a non-porous structure would stop corrosion → the engineer should try to find an alloy system achieving (1-θ + θε) → 0

Modelling issues:

- physical and chemical correct time depended boundary conditions
- capacitive double layer, layer growth is still to strong, convective effects
- pH and conductivity variations / migration
- re dissolution effects

Summary

- Simulations can **assist** the design regarding corrosion protection
- Chose of the model depends on requirements (careful)
- Simplified parameter studies are possible and can save experimental effort
- Many process parameters still have to be implemented
- The whole simulation based design approach requires interdisciplinary working and should be tackled in modules

there is still much to do

Thank you