

Time dependent simulations of thermoelectric thin films and nanowires for direct determination of their efficiency with COMSOL Multi-physics[®].

Miguel Muñoz Rojo, Juan José Romero, Daniel Ramos,

Diana Borca-Tasciuc, Theodorian Borca-Tasciuc and Marisol Martín Gonzalez.

COMSOL CONFERENCE ROTTERDAM2013

I. Introduction

Introduction.II. Modeling.III. Results.

Thermoelectric materials transform heat into electricity, and vice-versa.

Nano-structuration increases efficiency of thermoelectric materials.

- ZT determination: *Measurement of individual properties.*
- S = Seebeck coefficient. σ = Electrical conductivity. k = Thermal conductivity.

Harman technique

II. COMSOL Model.

II. COMSOL modeling

 Geometry: Thin Films

Nanowires

- Variable thickness.
- With and without electrodes and electrical wire.

Boundary conditions:

- Top side temperature and voltage evolve freely.
 - Bottom side fixed at 293.15 K (heat sink) and grounded (V=0).

- Variable diameter.
- Length 20µm.

II. Modeling. III. Results.

Thermoelectric properties

- Material: p-type Bi₂Te₃
- $S(T), \sigma(T)$ and k(T)

т (К)	S (μV/K)	k (W/K∙m)	σ (mS·m)
100	75	2.5	185
150	125	2	142
200	170	1.55	100
250	200	1.35	72
300	218	1.28	60
350	225	1.35	55
400	218	1.75	70

Seifert, W., Ueltzen, M., Müller, E.; One Dimensional Modelling of Thermoelectric Cooling; phys.stat.sol. (a) 194, No.1, pp 277 – 290; 2002

III. Results: Films.

Introduction.
Modeling.
Results.

• Sample Temperature and voltage evolution during 10mV, 0.1 s, pulse.

Ideal Conditions

Dimension vs Frequency

Thin films

High (f_{HF}) and low (f_{LF}) frequencies needed for experimental Harman determination of ZT

<u>Nanowires</u>

 f_{HF} in nanowires is extremely high to be measured with typical experimental devices.

Influence of electrical contacts

Introduction.
Modeling.
Results.

Under the presence of contact resistances and electrical wire.

 $f_{\rm HF}$ and ZT are modified depending on the electrical contact resistance and wire diameter

Conclusions

Introduction.
Modeling.
Results.

- *Development of thermoelectric COMSOL module* for time dependent simulations.
- *Elucidation of experimental conditions* to measure nanostructures with Harman technique.

Thank you for your attention!