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Presentation overview 

• Introduction 

• Metal foams with foaming agents in the melt 

• Physical model 

• Governing equations 

• Simulations by Comsol Multiphysics 

• Results 

• Conclusions 
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Decomposition of foaming agents in the melt 
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2 cm 

Foaming process (ALPORAS) for 
aluminium: 

- base metal melting 

- temperature stabilization 

- viscosity raising adding 1-2% Ca 

- aggressive stirring 

- adding of foaming agent powder 

- short stirring 

- withdrawing of the stirring system 
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Decomposition of foaming agents in the melt 
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2 cm 

H2 bubble 

Al (or Al alloy) 

• - crucible sealing 

• - foam formation controlled by 
adjusting overpressure, temperature 
and time 

• - cooling of foamed aluminium 

• - withdrawing. 

melted Al and H2  gas 

Al metal foam: 



Decomposition of foaming agents in the melt: physical phenomena  
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Foaming is a complex phenomena: 

 

• simultaneous mass, momentum and energy transfer mechanisms 

• several physical phenomena on interfaces: surface tension effects, disjoining 
pressure, interface motion 

• bubble dynamics, coarsening, coalescence, rupture 

• other aspects (drainage, mould filling, geometry)  

• difficulty for experimental measurements (foams are hot, opaque, etc.) 
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Physical model 
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• A 2D rectangular cavity where melted Al and  H2 gas 
bubbles are flowing inside during the foaming process. 

 

• Isothermal process, mass diffusion is not considered 
and gravity is absent (cavity is set horizontally). 

 

• The gas follows the ideal gas law, the liquid is 
considered an incompressible Newtonian fluid,  the 
two fluids are immiscible. 

 

• The bubbles have the same radius and pressure, the 
gas-liquid interface is a free surface with uniform 
surface tension coefficient. 

 

• With system at rest, the stress balance at the surface 
of a circular bubble is given by the Laplace’s equation  
(capillary pressure): 
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Physical model 
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The liquid metal  is suctioned from the capillary films to 
the borders of the foam (Plateau borders) causing the 
interfaces to thin and bubbles to merge.  

 

The drainage of the thin films is slowed and prevented 
when interactions between the film surfaces come into 
play: these effects are represented by a pressure, the 
disjoining pressure Π(h) (attractive and repulsive 
molecular forces in the thin film). 

 

In the model, once the film h between the bubbles 
became sufficiently small, we take into account the 
disjoining pressure Π(h) (representing a stabilization 
effect suppressing the driving force for film thinning):  
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Simulations by Comsol Multiphysics 4.3b 
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Equations (coupled)    (CDF and Chemical Reaction Engineering modules):  
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Simulations by Comsol Multiphysics 4.3b 
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External force  
(due to the disjoining pressure) is a 
defined source of free energy in Comsol 

to track each interface: 
assigning a marker ci  to each bubble i and moving the marker like a species in the system, with the 
same velocity field of the corresponding bubble  
 

                             

  iiii
i RccD
t

c





 u

smDi /10 230 the marker is only convected 

 if valuesetcxc ji 

ic jc

disjoining pressure is switched on 

transport of diluted species (Fick’s eq. and convection term) 

0iR



Experimental results:  without disjoining pressure,  bubbles merge 
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volume fraction of H2 in a metal foam flowing in a 
cavity after t =0.06 s with disjoining pressure 
equal to zero 

volume fraction of H2 in a metal foam flowing in a 
cavity after t =0.12 s with disjoining pressure 
equal to zero 



Experimental results:  with disjoining pressure,  stabilization effect 
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volume fraction of H2 a t =0.12 s when the 
disjoining pressure sets a repulsive stabilization 
effect between the bubbles interfaces 

body force due  to the disjoining pressure  at t =0.12 s 
giving repulsive forces between the bubbles 
interfaces 



Experimental results:  pressure field 
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pressure field in a metal foam flowing in a cavity 
after t =0.12 s with disjoining pressure equal to 
zero 

pressure field in a metal foam flowing in a cavity after 
t =0.12 s when the disjoining pressure sets a repulsive 
stabilization effect 

without repulsive effects with repulsive effects due to the 
disjoining pressure 



Conclusions 
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• A metal foam represented by H2 gas bubbles and liquid aluminium moving in a laminar flow has been 
modeled and simulated. 
 
 
• Surface tension effects have been considered and repulsive forces between neighboring bubbles 
have been expressed through the disjoining pressure.  
 
 
• The model uses a formulation of the disjoining pressure in the framework of the phase field method. 
Fundamental mechanisms due to surface tension effects and disjoining pressure have been 
reproduced.  
 
 
• The numerical results show that diffuse interface methods are effective to model this kind of 
complex phenomena. 
 
 
• The above results are encouraging for our under way researches in the modeling of metal foaming 
processes. 
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