COMSOL CONFERENCE ROTTERDAM2013

Modeling drug release from materials based on electrospun nanofibers

<u>Paweł Nakielski</u> Tomasz Kowalczyk, Tomasz Kowalewski

Institute of Fundamental Technological Research Warsaw, Poland

EUROPEAN UNION EUROPEAN SOCIAL FUND

Electrospinning

Motivation

The lack of effective neuroprotective products for postoperative treatment of brain injures that lead to scar tissue formation and in the worst case to death of the patient.

Traumatic Brain Injury:

In EU every year 30-40/10 000 people suffer extensive damage from brain injury and only 45% back to normal life.

Optimal release profile

Characteristics of the optimal implant:

- Maintance of drug levels in the desired therapeutic window
- Time of drug release from the implant about 14 days

How to obtain optimal release profile:

- Selecting desired drug-polymer configuration
- Selecting optimal material structure (porosity, multilayer)
- Verifying release profiles for "analog system" and targeted one
- Modeling, verifying and validating models

Fluorescence microscopy of encapsulated Rhodamine B

Release profile of $\alpha\text{-tocopherol}$ from PLCL fibers

Fluid systems

2D – diffusion in the brain 3D - Representative Unit Cell of the material

Desorption – diffusion model in porous material

- Diffusing drug
- Empty space \bigcirc

Desorption – diffusion model in porous material

$$\frac{\partial c_A}{\partial t} = k_a \left(c_A^{\max} - c_A \right) c_B - k_d c_A$$

$$2\mathsf{D} \qquad \varepsilon \, \frac{\partial c_B}{\partial t} = \varepsilon \, \nabla \cdot \left(D_{Beff} \, \nabla c_B \right) - \left(1 - \varepsilon \right) \rho_p \, \frac{\partial c_A}{\partial t}$$

3D
$$\frac{\partial c_B}{\partial t} = \nabla \cdot \left(D_B \nabla c_B \right) - \rho_p \frac{\partial c_A}{\partial t}$$

 $C_A - drug$ concentration at the nanofiber surface [kg/ kg of the material] $C^{max}_A - maximal drug$ concentration at the nanofiber surface [kg/ kg materialu] $C_B - drug$ concentration in the pores of the material[kg/m³] $\epsilon - porosity$ of the material[-] $D_B - diffusion$ coefficient in the fluid [m²/s] $\rho_p - polymer$ specific density[kg/m³]

 k_a , k_d – adsorption and desorption constant

Numerical simulations of drug release in RUC

Numerical results for materials with different porosity

 $\epsilon = 0.4$

10

Numerical results for materials with different fibers orientation

Numerical results for materials with different fibers arrangement

Experimental results of α -tocopherol release

13

NUMERICAL RESULTS

Experiments with analog drug systems Rhodamine release from nanofibrous mats

Cuvette with material on the top of the PVA hydrogel

Experiments with drug analog quantitative study

Optical measurement at the experimental setup

Simulation results from COMSOL Multiphysics

EUROPEAN UNION EUROPEAN SOCIAL FUND

Rhodamine B release results in the hydrogel random nanofibers

Rhodamine B release results in the hydrogel core-shell nanofibers

Numerical results of the release to CSF and brain tissue

Thank you!

Nanofibers application

Medicine:

- Protective intraoperative dressings
- The reconstruction of blood vessels, ureter and bladder
- Scaffolds for cell culturing
- Drug delivery systems

Industry and other:

- Textiles
- Filtration
- Catalyst
- Sensors

http://www.nanofibersolutions.com

Drugs used in nanofibers

- Vitamin E antioxidant
- NGF nerve growth factor
- BDNF brain derived neurotrophic factor specific for brain tissue

Drug and analog systems

Target system	Analog system
Lipophilic – solid nanofibers, core-shell	
α-tocopherol 430Da, r _H = 0,9nm	Rhodamine B 479Da, r _H = 0,9nm
Hydrophilic – core-shell, emulsion	
Sodium glutamate 169Da, r _H = 0,6nm	Methylene blue 320Da, r _H = 0,8nm
Nerve Growth Factor 13,4kDa, r _H = 2,8nm	Bovine Serum Albumin-FITC 66kDa, r _H = 4,8nm
Brain Derived Neurotrophic Factor 13,6kDa, r _H = 2,8nm	

Neuroprotection after brain injury nanostructure favorable tissue recovery

Control group without injury and dressing

M. Frontczak-Baniewicz, D. Sulejczak, J. Andrychowski

4 days after injury with dressing

14 days after injury with dressing

30 days after injury with dressing

Porosity and orientation of the fibers impact on diffusion

$$\frac{D}{D_0} = F \cdot S = e^{-a\phi^b} \cdot e^{-0.84f^{1.09}}$$

$$\frac{D}{D_0} = \frac{\text{diffusion coefficients in porous material}}{\text{diffusion coefficients in fluid}}$$

$$F - \text{ hydrodynamic interactions}$$

$$S - \text{ steric factor}$$

$$\epsilon - \text{ porosity of the materials}$$

$$0.8 \quad \text{or } epsilon = 0.9 \quad \text{or } epsilon = 0.8 \quad \text{or } epsilon = 0.7 \quad \text{or } epsilon = 0.7$$

Clague and Phillips, Phys. Fluids, 1996

25

Drug encapsulation methods

- Solid fibers (lipophilic drugs)
- Emulsions (hydrophilic drugs)
- Core-shell (hydrophilic, lipophilic)

Nanofibers made by emulsion electrospinning²⁶

Experimental results of drugs release : NGF and BDNF

Comparison of NGF release for different type of electrospinning

Comparison of protein release for different amounts of the aqueous phase

NUMERICAL RESULTS