COMSOL CONFERENCE ROTTERDAM2013

Computational Building Physics Heat transfer in building constructions with a cavity

ir. Bram Kersten dr.ir. Jos van Schijndel (presenter)

Technische Universiteit **Eindhoven** University of Technology

AL BURL

Where innovation starts

Scale levels Building physics

- [mm] Material Physics
- [m] Building Physics
- [km] Urban Physics
- [Mm] ... Physics

Scale level [Mm] EU physics EU climate scale performance & design

Virtual building placement

TU/e Technische Universiteit Eindhoven University of Technology

Scale level [km] Urban physics Urban climate performance

Scale level [m] Building Physics Indoor climate performance & design

Scale level [mm] Material Physics Moisture induced damages

Building constructions with a cavity

Heat transfer in cavities

TUe Technische Universiteit Eindhoven University of Technology

Exemplaric result

Surface: Temperature (degC)

MULTIPHYSICS

Overall results

Nr	Cavity thickness	Insulation	Air velocity	Cavity heat exchange		Cavity thermal resistance	Overall thermal resistance
1	14 cm	No	Without air	Radiation:	1,73 W/m ² .K	0,24 m ² .K/W	0,58 m ² .K/W
2	14 cm	No	Stagnant, 0 m/s	Conduction: Radiation:	0,07 W/m ² .K 1,70 W/m ² .K	0,23 m ² .K/W	0,57 m ² .K/W
3	4 cm	No	Stagnant, 0 m/s	Conduction: Radiation:	0,22 W/m ² .K 1,60 W/m ² .K	0,21 m ² .K/W	0,55 m ² .K/W
4	4 cm	No	0,2 m/s	Conv.+cond.: Radiation:	0,67 W/m ² .K 1,51 W/m ² .K	0,12 m ² .K/W	0,46 m ² .K/W
5	4 cm	No	0,05 m/s	Conv.+cond.: Radiation:	0,41 W/m ² .K 1,56 W/m ² .K	0,17 m ² .K/W	0,51 m ² .K/W
6	4 cm	Yes	No air in cavity	Radiation:	0,32 W/m ² .K	0,30 m ² .K/W	3,14 m ² .K/W
7	4 cm	Yes	Stagnant, 0 m/s	Conduction: Radiation:	0,04 W/m ² .K 0,28 W/m ² .K	0,26 m ² .K/W	3,09 m ² .K/W

31-10-2013 PAGE 9

Conclusions

- Comsol can be used for thermal design and optimization of building constructions.
- Future work will include 3D applications

