

Optimizing Inductor Winding Geometry for Lowest DC-Resistance using LiveLink between COMSOL and MATLAB

H. Schneider*, T. Andersen, J. D. Mønster, M. P. Madsen, A. Knott and M. A. E. Andersen Department of Electrical Engineering, Technical University of Denmark - DTU Elektro, Ørsteds Plads, building 349, DK-2800 Kgs. Lyngby, Denmark

Problem: PCB layer thickness is a bottleneck for high power applications.

Conventional Wire Wound Inductor

- Limited utilization of the winding space.
- Manual manufacturing process for small

core and thick wires.

Hybrid Foil/PCB Wound Inductor

- Fully automated process. From cutout of the foils to pick and placement of the winding assembly.
- Good utilization of the winding space.
- Low price due to mass production of the winding assembly
- Short time to marked due the possibility of a distributed stock of the winding assembly.
 - Configurable winding configuration through PCB traces.
- Different core materials can be used with the same winding assembly.

Input

Solution: Optimize the winding configuration by changing the angle of each segment of the winding.

Optimization of the winding configuration

Thickness of a

DOSITION

segment

N=2

F3

N=1

F1

F2

F4

2D continuity and import to COMSOL via LifeLink[™]

10 15

Output

Import result from COMSOL into Matlab and plot results

Results

Segment

angle

N=3

20 25

30

Few turns, PCB layer thickness << Foil thickness

Clearance

Number of turns: 10, Segment thickness: F1, F2, F3 = 500 μm, F4 = 70um, Clearance = 1mm

Winding angle configuration	Bottom	Opt.	Тор
Starting point SP [%]	0	20	0
Outer Foil Segment F1 [%]	0	63	0
Top Foil Segment F2 [%]	0	37	100
Inner Segment F3 [%]	0	0	0
Bottom Segment F4 [%]	100	0	0
DC resistance [mΩ]	6.46	4.75	4.52
Improvement [%]	Ref.	27	30

Many turns, PCB layer thickness << Foil thickness Number of turns: 100, Segment thickness: F1, F2, F3 = 500 µm, F4 = 70um, Clearance = 1mm						
Starting point SP [%]	0	0	0			
Outer Foil Segment F1 [%]	0	75	0			
Top Foil Segment F2 [%]	0	25	100			
Inner Segment F3 [%]	0	0	0			
Bottom Segment F4 [%]	100	0	0			
DC resistance $[m\Omega]$	435	432	432			
Improvement [%]	Ref.	0.8	0.8			

Few turns, PCB layer thickness = Foil thickness

Number of turns: 10, Segment thickness: F1, F2, F3 = 500 µm, F4 = 70um, Clearance = 1mm

Winding angle configuration	Bottom	Opt.	Тор
Starting point SP [%]	0	100	0
Outer Foil Segment F1 [%]	0	38	0
Top Foil Segment F2 [%]	0	21	100
Inner Segment F3 [%]	0	0.5	0
Bottom Segment F4 [%]	100	40.5	0
DC resistance $[m\Omega]$	2.6	2.3	2.6
Improvement [%]	Ref.	11	0

Technical University of Denmark, DTU Elektro, Ørsteds Plads, bygning 349, DK-2800 Kgs. Lyngby, Denmark hensc@elektro.dtu.dk

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston

