Water Quality Model for Brewster Lake

Zuhdi Aljobeh and Gerardo Argueta Undergraduate Students Research Civil Engineering Department Valparaiso University Valparaiso, Indiana

Study Goal

Develop a dynamic water quality model for Brewster lake using explicit "process-oriented" mechanistic basis that includes the chemical and biological interactions that take place in the lake.

Why This Study:

Most lake water quality models (studies) use steady-state input-output "data-oriented" mass balance equations.

Objectives

- Collect/obtain physical data of the lake.
- Develop a graphical model of the lake.
- Perform hydrodynamic analysis of the lake's watershed water budget.
- Collect and analyze water samples for a set of water quality variables.
- Obtain atmospheric/weather data.
- Develop/derive a mathematical model for the lake's water quality.
- Develop a numerical model.
- Perform water quality simulations using COMSOL Multiphysics®.

Study Location

Pierce Cedar Creek Biological Field Station, Barry County, Southwest MI

Brewster Lake

Physical Data Collected

- Bathymetric data lake depth
- USGS topographic data watershed delineation
- GPS data
- Field dimensional measurements
- Google areal images
- Lake elevations
- Outlet flow rate measurements

Graphical Model – Brewster Lake

AutoCAD Civil 3D 2013

Graphical Model – Brewster Lake

COMSOL Multiphysics®

Graphical Model – Brewster Lake

COMSOL Multiphysics®

Used the USGS conceptual model to perform the hydrodynamic analysis

	The Water Cycle	Condensation
Water Storage in Ice and Snow Precipi	tation Water Storage in the Atmosphere Transp	iration
Snowmelt Runoff to Streams	Surface Runoff	Evaporation
Ground Water Infiltration Ground Water Discharge Ground Water Storage	Freshwater Storage Ground Water Infiltration	Water Storage in Oceans
U.S. Geological Survey	Ground Water Discharge	

4 main components Runoff Groundwater Evaporation Precipitation

 Runoff and Precipitation was calculated using TR-55

ressed in: Dim	County: iensionles	Barry	— Exe	cution Date: 7	
ressed in: Dim Stor	ensionles		Exe	cution Date: 7	/15/2012
ressed in: Dim Stor	ensionles				/15/2015
Summary Sub-area Description	Sub-or	rea Flows to	Area (ac)	Weighted	Tc (hr)
BL Watershed	Outlet	-	81.40	70	0.570
	Rai Summary Sub-area Description BL Watershed	Summary Sub-area Description Sub- Rea BL Watershed Outlet	Summary Sub-area Description Sub-area Flows to Reach/Outlet BL Watenshed Outlet	Summary Sub-area Flows to Reach/Outlet Area (ac) 8L Watershed Outlet \$1.40	Buintall Distribution Identifier Type II Summary Sub-area Description Sub-area Flows to Reach/Outlet Area (ac) Weighted (N) BL Watenshed Outlet \$81.40 70

- Evaporation was estimated using a mathematical model
- Groundwater was estimated by using a water budget balance

Lake Water Level Monitoring

Outlet flow rate measurements

L-THIA 2.0 web-based watershed software – Purdue University

Watershed Analysis

L-THIA Basic Input										
• Name t • State : • County • Area in	o identify output: : :		wdcjy22636 Michigan Barry acres 🔻	 ▼ ▼ 						
LAND USE	HYD. SOIL GROUP	1	2	3						
Water/Wetlands Agricultural	• B •	SCENARIO 1 7.4 7.1	SCENARIO 2	SCENARIO 3						
Grass/Pasture Forest	• B •	22.2 61.7								
SELECT LANDUSE SELECT LANDUSE SELECT LANDUSE	• A • • A • • A •									
SELECT LANDUSE	▼ A ▼ Total Area	98.5	0	0						

L-THIA OUTPUT

Scenario Name : wdcjy22636 Total area : 98.5 acres State : Michigan County : Barry

Link To GIS RAINFALL DATA Text File

Average Annual Runoff Volume for SCENARIO 1										
Land Use	Hydrologic Soil Group	Area (acres)	Average Annual Runoff Volume (acre-ft)							
Water/Wetlands	В	7.4	0							
Agricultural	В	7.1	1.07							
Grass/Pasture	В	22.2	1.01							
Forest	В	61.7	1.68							
	Total Ann	3.77								
	Average Annu	al Runoff Depth (in)	0.46							

Average Runoff Depth For Hydrologic Soil Group And Landuse Combination									
Land Use	Hydrologic Soil Group	Curve Number	Runoff Depth (in)						
Water/Wetlands	В	0 0							
Agricultural	В	75	1.82						
Grass/Pasture	В	61	0.55						
Forest	В	55	0.33						
Average Annual Rainfall Depth (in) 32.0									

Weeks	Rainfall total (in)	Rainfall Average (in/day)	Runoff (cfs)	Evaporation (in)	Temperature (F)	Relative Humidity (%)	Wind Speed (kt)
May 26 -June 1	0.99	0.14	0	1.13	66.7	70.9	9.1
June 2 - June 8	0	0.00	0	1.25	60.2	61.5	6.9
June 9 - June 15	1.19	0.17	0	1.25	68.3	73.6	7.2
June 16 – June 22	0.18	0.03	0	1.25	70.9	59.9	7
June 23 - June 29	11.67	1.67	2	1.25	73.8	74.2	7.4
June 30 - July 6	10.92	1.56	1.36	1.44	69.7	69.6	6.2
July 7 -July 13	6.59	0.94	0	1.44	73.1	72.8	6.4
July 14 - July 20	18.29	2.61	14.99	1.44	80.8	70.4	6.6
July 21 - July 27	10.14	1.45	0.83	1.44	68.1	70.5	6.8
July 28 - August 3	20.54	2.93	21.52	1.13	64.4	77.8	6.7

Weekly Weather Averages

Weeks Average discharge (cfs)		Volume of Discharge (m³)	Volume of evaporation (m³)		
June 16 – 22	2.133	36529.8	1682.8		
June 23- 29	1.69	28943.0	1682.8		
June 30 – July 6	1.117	19129.8	1935.2		
July 7 - 13	1.214	20791.0	1935.2		
July 14 - 20	1.366	23394.2	1935.2		
July 21 – 27	1.188	20345.7	1935.2		
July 28 – August 3	1.099	18821.5	1514.5		

Weekly Water Budget

Weeks	WeeksVolume of Runoff (m³)		Change in Volume (m³)	Groundwater Volume (m³)
June 16 – 22	0.0	0.143	7579	45791.6
June 23- 29	34252.1	0.122	6466	2839.7
June 30 – July 6	23291.4	-0.239	-12667	-14893.5
July 7 - 13	0.0	-0.314	-16642	6084.2
July 14 - 20	256719.2	-0.2	-10600	-241989.9
July 21 – 27	14214.6	-0.148	-7844	222.3
July 28 – August 3	368552.1	-0.028	-1484	-349700.2

Weekly Water Budget – Groundwater Flow Rate

Nutrient Loading to the Lake from Watershed

Scenario Name : wdcjy22636 Total area : 98.5 State : Michigan County : Barry		Scenario Nam Total ar State : 1 County	e : wdcjy22636 a : 98.5 Vichigan v : Barry		Scenario Name : wdcjy22636 Total area : 98.5 State : Michigan County : Barry		
NPS Nitrogen losses		NPS Phosphorous losses			NPS BO	D losses	
Land Use	SCENARIO 1 (lbs)	Land Use	SCENARIO 1 (lbs)		Land Use	SCENARIO 1 (bs)	
Water/Wetlands	0	Water/Wetlands	0		Water/Wetlands	0	
Agricultural	13	Agricultural	3		Agricultural	11	
Grass/Pasture	1	Grass/Pasture	0.027		Grass/Pasture	1	
Forest	3	Forest	0.046		Forest	2	
Total/Scenario	17	Total/Scenario	3.073		Total/Scenario	14	
Avg Annual Concentration (ppm)	1.681	Avg Annual Concentration (ppm)	0.304		Avg Annual Concentration (ppm)	1.385	

Monitoring Plan/Design

Monitoring Plan/Design

Monitoring Plan

- 2 cross sections
- 14 water columns
- 3 sampling depths

Monitoring Plan

E-W Cross Section

Monitoring Plan

NE-SW Cross Section

Depth (m):

NS cross-section

1	2	3	4	5	6	7	8	9
16639718 E	16639745 E	16639772 E	16639799 E	16639826 E	16639854 E	16639881 E	16639908 E	16639935 E
4711041 N	4711081 N	4711121 N	4711161 N	4711201 N	4711241 N	4711281 N	4711321 N	4711361 N

Monitoring and Sampling

Monitoring and Sampling

- 14 water columns
- 3 sampling depths
- YSI Unit In-lake measurements
 - Dissolved Oxygen
 - Temperature
 - pH
 - Conductivity
- Water Sampler

Lab Analyses

- 8 Parameters
 - Total Nitrogen
 - Total Phosphorus
 - Reactive Phosphorus
 - Ammonia
 - Nitrates
 - Chemical Oxygen Demand
 - Biochemical Oxygen Demand
 - Total Organic Content

Variable Notation Concentration Units:

 C_1 = Ammonia Nitrogen NH₃, mg N/L C_2 = Nitrate Nitrogen NO₃, mg N/L C_3 = Inorganic Phosphorus PO₄, mg P/L C_4 = Phytoplankton Carbon PHYT, mg C/L C_5 = Carbonaceous BOD CBOD, mg O₂/L C_6 = Dissolved Oxygen DO, mg O₂/L C_7 = Organic Nitrogen ON, mg N/L C_8 = Organic Phosphorus OP, mg P/L

Wool, et al., 2006 (WASP6 Manual):

Dissolved Oxygen DO, mg O_2/L

$$\frac{dC_6}{dt} = k_2(C_S - C_6) - k_d 1.047^{(T-20)} \frac{C_6}{k_{BOD} + C_6} C_5 - \frac{64}{14} k_{12} 1.08^{(T-20)} \frac{C_6}{k_{NIT} + C_6} C_1 - \frac{SOD}{D} 1.08^{(T-20)} + G_P \left(\frac{32}{12} + \frac{12}{14} (1 - P_{NH_3})\right) C_4 - \frac{32}{12} k_{1R} 1.045^{(T-20)} C_4$$

 $\ln C_s = -139.34 + (1.5757x10^5)T_K^{-1} - (6.6423x10^7)T_K^{-2} + (1.2438x10^{10})T_K^{-3} - (8.6219x10^{11})T_K^{-4} - 0.5535 S (0.031929 - 19.428T_K^{-1} + 3867.3T_K^{-2})$

$$\frac{dC_5}{dt} = \left(\frac{32}{12}\right) k_{1d} C_{PHYT} - k_d 1.047^{(T-20)} \frac{C_6}{k_{BOD} + C_6} C_5 - \frac{V_{s3}}{2D} C_5 - \frac{V_{s3}}{2$$

Ammonia Nitrogen $\frac{\partial C_1}{\partial t} = D_{pl} a_{NC} (1 - f_{on}) C_4 + k_{71} \Theta_{71}^{(T-20)} \left(\frac{C_4}{K_{mPc} + C_4}\right) C_7 - G_{pl} a_{NC} P_{NH3} C_4$

Nitrate Nitrogen

$$\begin{aligned} \frac{\partial C_2}{\partial t} &= k_{12} \Theta_{12}^{(T-20)} \left(\frac{C_6}{K_{NIT} + C_6} \right) C_1 - G_{pl} a_{NC} (1 - P_{NH3}) C_4 \\ &- k_{2D} \Theta_{12}^{(T-20)} \left(\frac{K_{NO3}}{K_{NO3} + C_6} \right) C_2 \end{aligned}$$

$$P_{NH3} = C_1 \left(\frac{C_2}{(K_{m14} + C_2)(K_{m14} + C_2)} \right) + C_1 \left(\frac{K_{m14}}{(C_1 + C_2)(K_{m14} + C_2)} \right)$$

Phytoplankton Nitrogen

$$\frac{\partial (C_4 a_{NC})}{\partial t} = G_{pl} a_{NC} C_4 - D_{pl} a_{NC} C_4 - \frac{V_{s4}}{D} a_{NC} C_4$$

Organic Nitrogen

$$\frac{\partial C_7}{\partial t} = D_{pl} a_{NC} f_{on} C_4 - k_{71} \Theta_{71}^{(T-20)} \left(\frac{C_4}{K_{mPc} + C_4}\right) C_1 - \frac{V_{s3}(1 - f_{D7})}{D} C_1$$

Inorganic Phosphorus

$$\frac{\partial C_3}{\partial t} = D_{Pl} \partial_{pc} \left(1 - f_{op} \right) C_4 + k_{83} \Theta_{83}^{(T-20)} \left(\frac{C_4}{K_{mPc} + C_4} \right) C_8 - G_{Pl} a_{pc} C_4$$

Phytoplankton Phosphorus

$$\frac{\partial (C_4 a_{pc})}{\partial t} = G_{Pl} a_{pc} C_4 - D_{Pl} a_{pc} C_4 - \frac{V_{S4}}{D} a_{pc} C_4$$

Organic Phosphorus

$$\frac{\partial C_8}{\partial t} = D_{Pl} a_{pc} f_{op} C_4 - k_{83} \Theta_{83}^{(T-20)} \left(\frac{C_4}{K_{mPc} + C_4}\right) C_8 - \frac{V_{s3} (1 - f_{DB})}{D} C_4$$

Rearation:

Flow-Induced Dependent on depth

Wind Induced Wind velocity $\begin{array}{l} d < 2 \ ft \\ 2 < d < 20 \ ft \\ d > 20 \ ft \end{array}$

 $\label{eq:w} \begin{array}{l} W < 6 \mbox{ m/s} \\ 6 < w < 20 \mbox{ m/s} \\ w > 20 \mbox{ m/s} \end{array}$

Rearation: Flow-Induced Dependent on depth < 2 ft $k_{qj}(20^{\circ}C) = 5.349 v_{j}^{0.67} D_{j}^{-1.85}$ 2 < d < 20 ft $k_{qi}(20^{\circ}C) = 5.049 v_{j}^{0.97} D_{j}^{-1.67}$ d > 20 ft $k_{qj}(20^{\circ}C) = 3.93 v_{j}^{0.50} D_{j}^{-1.50}$

Rearation: Wind Induced - Wind velocity

$$k_{wj} = \frac{86400}{100 D_j} \left(\frac{D_{ow}}{v_w}\right)^{2/3} \left(\frac{\rho_a}{\rho_w}\right)^{1/2} \frac{\kappa^{1/3}}{\Gamma} \sqrt{C_d} (100 \bullet W)$$

W < 6 m/s

6 < w < 20 m/s

$$k_{wj} = \frac{86400}{100 D_j} \left[(TERM1 \bullet 100 W)^{-1} + (TERM2 \sqrt{100 W})^{-1} \right]^{-1}$$

w > 20 m/s

$$k_{wj} = \frac{86400}{100 D_j} \left(\frac{D_{oW}}{\kappa_{Z_e}} \frac{\rho_a v_a}{\rho_W v_W} \sqrt{C_d} \right)^{1/2} \sqrt{100 W}$$

Acknowledgements

• Pierce Cedar Creek Institute

• Valparaiso University

Q & A

- Wool, T., Ambrose, R., Martin, J. and Comer, E. "Water Quality Analysis Simulation Program (WASP) version 6 manual." Atlanta. Environmental Protection Agency. 2006. PDF.
- Cerco, C. and Cole. T. "*Three-Dimensional Eutrophication Model of Chesapeake Bay*." Vicksburg. 1996. PDF.
- Arhonditsis, G. and Brett, M. "Eutrophication Model for Lake Washington (USA) Part I. Model description and sensitivity analysis." Seattle. 2004. PDF.
- United States Department of Agriculture."*Technical Release 55.*" Washington D.C. 1986. PDF.

First Round Results

Water Column		Dissolve Oxygen (mg/L)	pН	Temperature (°C)	Conductivity (mS/cm)
	Surface	8.95	8.41	20.18	0.345
1	Middle	8.44	8.04	18.41	0.348
	Bottom	4.10	7.30	17.70	0.423
	S	8.62	8.61	20.01	0.345
2	Μ	12.94	8.28	15.83	0.363
	в	0.45	6.69	7.58	0.410
	S	8.32	8.47	20.11	0.345
3	M	13.27	7.66	10.70	0.372
	в	0.67	7.05	6.40	0.545
	S	8.65	8.47	20.08	0.345
4	Μ	14.86	8.33	12.26	0.366
	В	0.55	7.43	6.68	0.474
	S	8.65	8.55	20.35	0.343
5	М	7.75	8.24	18.97	0.328
	В	1.02	7.47	17.29	0.328

First Round Results

Water Co	olumn	Total Phosphorus (mg/L)	Total Nitrogen (mg/L)	Reactive Phosphorus (mg/L)	Ammonia (mg/L)	Nitrates (mg/L)	TOC (mg/L)
	Surface	0.39	0.0	-	-	0.1	7.1
1	Middle	0.34	0.1	-	0.006	0.0	7.3
	Bottom	0.40	0.5	0.03	0.012	0.3	5.9
	S	0.32	0.3	-	-	0.1	6.6
2	Μ	0.45	1.1	0.01	0.006	0.1	5.2
	В	0.44	1.4	0.13	0.052	0.1	7.1
	S	0.30	1.7	0.07	-	0.1	5.4
3	Μ	0.37	-	0.001	0.001	0.1	5.0
	В	3.25	5.0	2.29	3	-	15.2
	S	0.40	0.9	0.07	-	0.1	6.8
4	Μ	0.36	1.8	0.013	0.013	0.1	5.5
	В	1.10	2.0	0.65	1.608	-	7.7
	S	0.29	0.0	-	0.007	0.1	6.6
5	Μ	0.31	3.4	0.007	0.007	0.1	5.9
	В	0.63	1.2	0.11	0.127	0.1	7.5

Second Round Results

Water Colum	nn	Dissolve Oxygen (mg/L)	pН	Temperature (°C)	Conductivity (mS/cm)
	Surface	7.45	8.12	26.37	0.321
1	Middle	7.29	8.20	26.36	0.322
	Bottom	4.62	6.88	26.09	0.334
	S	7.07	8.33	26.45	0.322
2	М	0.40	7.35	15.46	0.393
	В	0.00	6.60	7.64	0.523
	S	7.47	8.35	26.47	0.323
3	Μ	0.25	7.16	13.88	0.404
	В	0.34	6.55	7.08	0.667
	S	6.48	8.34	26.47	0.322
4	Μ	0.85	7.37	18.06	0.38
	В	0.40	5.84	8.44	0.482
	S	6.65	8.41	26.58	0.320
5	М	6.62	8.37	26.49	0.321
	В	6.06	8.17	26.33	0.321

Second Round Results

Water Column		Total Phosphorus (mg/L)	Total Nitrogen (mg/L)	Reactive Phosphorus (mg/L)	Ammonia (mg/L)	Nitrates (mg/L)	TOC (mg/L)	COD (mg/L)	BOD (mg/L)
	Surface	0.440	1.700	0.150	0.006	0.133	5.2	10.900	-
1	Middle	0.393	0.700	0.090	0.003	0.100	5.3	8.500	-
	Bottom	0.330	1.950	0.110	0.004	0.100	4.6	2.700	-
	S	0.297	0.000	0.130	0.020	0.100	4.6	4.633	2.87
2	Μ	0.247	0.600	0.113	0.007	0.100	2.5	15.567	0.33
	В	2.143	3.500	3.163	4.781	0.700	5.0	5.667	0.51
	S	0.240	0.200	0.097	0.018	0.100	2.7	16.000	-
3	Μ	0.187	0.000	0.150	0.021	0.100	1.9	3.650	-
	В	6.333	4.900	4.550	6.849	0.667	13.3	24.367	-
	S	0.287	0.600	0.103	0.013	0.100	2.5	5.767	2.34
4	Μ	0.210	0.600	0.223	0.018	0.133	2.8	10.300	0.22
	В	0.737	2.200	0.710	2.948	0.300	1.6	5.900	0.45
	S	0.243	0.500	0.133	0.021	0.200	2.5	8.233	-
5	Μ	0.203	0.450	0.110	0.003	0.100	2.6	9.150	-
	В	0.213	0.900	0.110	0.009	0.133	2.5	10.433	-

First Round Results

Water C	olumn	Dissolve Oxygen (mg/L)	pН	Temperature (°C)	Conductivity (mS/cm)	
	Surface	8.51	8.21	22.45	0.343	
1	Middle	9.69	8.27	21.42	0.341	
	Bottom	6.73	8.33	20.98	0.349	
	S	8.22	8.95	22.16	0.343	
2	M	17.13	8.04	10.93	0.372	
	в	0.81	7.54	6.42	0.540	
	S	7.95	9.02	22.80	0.344	
3	M	15.69	8.94	10.84	0.373	
	в	0.87	8.34	6.64	0.548	
	S	7.93	9.02	22.20	0.343	
4	M	15.92	9.04	11.83	0.371	
	в	0.65	8.20	6.50	0.500	
	S	9.62	8.43	23.75	0.323	
5	M	13.67	8.15	16.04	0.366	
	в	0.90	7.52	8.77	0.446	
	S	9.13	8.74	23.81	0.325	
6	M	10.37	8.25	18.42	0.356	
	в	0.67	7.51	9.73	0.425	
	S	8.88	8.58	23.72	0.327	
7	M	9.20	8.30	20.14	0.335	
	в	0.64	7.80	10.17	0.405	
	S	9.64	8.66	23.76	0.322	
8	M	8.86	8.32	22.15	0.324	
	в	0.51	8.35	15.17	0.419	
	S	8.34	8.37	23.82	0.325	
9	M	8.65	8.38	23.25	0.325	
	В	1.10	7.59	22.99	0.367	

First Round Results

Water Column		Total Phosphorus (mg/L)	Total Nitrogen (mg/L)	Reactive Phosphorus (mg/L)	Ammonia (mg/L)	Nitrates (mg/L)	TOC (mg/L)
	Surface	0.22	1.3	0.05	0.005	0.1	6.7
1	Middle	0.25	1.8	0.06	0.019	0.1	6.9
	Bottom	0.26	0.6	0.08	-	0.1	7.8
	S	0.27	0.9	0.07	0.005	0.1	6.6
2	M	0.31	0.8	0.06	0.01	0.2	6.5
	в	2.05	4.1	1.64	2.806	-	7.9
	S	0.25	0.3	0.06	-	0.1	7.2
3	M	0.29	-	0.08	-	0.1	5.5
	В	2.29	6.4	1.96	2.943	-	7.1
	S	0.25	1.8	0.05	-	0.1	5.7
4	M	0.23	-	0.07	-	0.2	6.2
	в	0.68	1.2	0.17	0.444	-	6.7
	S	0.29	-	0.06	-	0.2	6.2
5	М	0.29	0.9	0.05	-	0.1	6.1
	В	0.65	-	0.10	0.371	-	8.5
	S	0.26	-	0.12	-	0.1	6.0
6	M	0.30	-	0.05	-	0.1	6.0
	в	0.45	-	0.20	0.308	0.1	6.7
	S	0.27	-	0.07	-	0.2	6.5
7	M	0.24	-	0.05	-	0.1	8.1
	в	0.98	-	0.12	0.021	0.1	8.5
	S	0.28	-	0.05	-	0.1	6.2
8	М	0.24	-	0.06	-	0.1	6.1
	В	0.54	0.8	0.05	0.122	1.9	8.2
	S	0.32	-	0.05	-	0.1	6.2
9	M	0.34	-	0.07	-	0.1	17.6
	В	0.39	-	0.08	-	0.2	7.3

Second Round Results

Water Column		Dissolve Oxygen (mg/L)	pН	Temperature (°C)	Conductivity (mS/cm)
	Surface	7.11	8.40	26.54	0.322
1	Middle	7.06	8.38	26.55	0.322
	Bottom	5.68	8.00	26.01	0.325
	S	7.66	8.44	26.59	0.322
2	М	0.52	7.40	15.52	0.397
	в	0.58	7.15	7.94	0.522
	S	8.08	8.49	24.14	0.326
3	м	0.50	8.10	14.40	0.400
	в	0.50	7.67	7.17	0.616
	S	7.78	8.87	24.14	0.327
4	м	0.38	8.89	15.84	0.399
	в	0.37	8.00	8.17	0.505
	S	7.22	8.59	24.11	0.327
5	м	1.91	8.13	20.81	0.376
	в	0.39	8.16	10.71	0.448
	S	7.22	8.87	24.18	0.327
6	М	6.70	8.74	23.94	0.327
	в	0.66	8.85	12.11	0.501
	S	6.91	8.68	24.22	0.326
7	М	7.37	8.78	24.16	0.326
	в	0.41	8.45	12.85	0.453
	S	6.26	8.52	24.33	0.324
8	М	7.38	8.65	24.15	0.323
	в	0.48	7.85	18.96	0.567
	S	6.78	8.47	24.33	0.325
9	М	6.69	8.53	24.33	0.325
	В	5.42	8.43	23.75	0.325

Second Round Results

Water Column		Total Phosphorus (mg/L)	Total Nitrogen (mg/L)	Reactive Phosphonus (mg/L)	Ammonia (mg/L)	Nitrates (mg/L)	TOC (mg/L)	COD (mg/L)	BOD (mg/L)
	Surface	0.086	9.63	0.11	0.026	0.10	2.3	13.2	-
1	Middle	0.043	0.70	0.11	0.020	0.10	3.0	16.6	-
	Bottom	0.060	3.86	0.16	0.112	0.10	3.1	16.2	-
	S	0.300	0.50	0.10	0.015	0.10	2.3	7.1	2.48
2	М	0.240	0.10	0.13	0.012	0.13	1.9	12.5	0.08
	В	2.523	8.83	2.84	4.182	0.73	3.9	19.3	0.48
	S	0.653	0.30	0.13	0.034	0.10	2.3	6.9	-
3	М	0.323	0.87	0.11	0.014	0.13	2.8	7.3	-
	В	5.013	11.33	4.22	6.591	0.87	6.5	15.9	-
	S	0.520	0.00	0.09	0.130	0.10	7.6	5.5	-
4	М	0.427	0.40	0.14	0.014	0.17	6.9	6.5	-
	В	1.873	4.13	2.36	4.388	0.60	9.6	4.3	-
	S	0.340	0.30	0.18	0.143	0.20	7.4	5.2	1.68
5	М	0.267	2.03	0.18	0.008	0.10	7.3	5.3	0.06
	В	0.950	0.70	1.31	2.245	0.33	8.7	3.6	0.39
	S	0.283	3.55	0.13	0.121	0.10	6.8	6.2	-
6	М	0.330	1.43	0.16	0.192	0.10	6.0	2.7	-
	В	0.660	1.00	0.46	0.809	0.20	6.2	3.7	-
	S	0.280	0.00	0.10	0.162	0.10	7.1	4.7	-
7	M	0.247	2.00	0.09	0.002	0.13	6.7	3.7	-
	В	0.587	1.07	0.54	1.368	0.20	7.2	4.8	-
	S	0.287	0.05	0.04	0.231	0.10	7.5	7.0	1.34
8	M	0.317	0.73	0.09	0.000	0.13	6.6	1.9	1.17
	В	0.357	0.00	0.12	0.484	0.20	7.1	5.5	0.21
	S	0.310	0.20	0.07	0.181	0.13	7.1	4.4	-
9	M	0.287	0.70	0.08	0.005	0.10	6.5	2.2	-
	В	0.277	0.40	0.11	0.217	0.13	6.5	1.1	-