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Abstract: We formulate a new mathematical 
model of Gas-Solids Mixing hydrodynamic flow 
[1] in a combustion chamber with a fluid bed 
system used in the combustion of mineral coal 
waste. This model in study is called Model Gas-
Solids Mixing and it is constructed by averaging 
the conservation equations (mass and 
momentum) for a two-phase flow, which takes 
into account the existence of a small parameter 
rho in the order of 10-4 . This parameter is related 
to the ratio of the mass densities of both phases 
and is a free boundary problem making an 
asymptotic adjustment in the model. This model 
is important in the production of thermal energy-
based solid waste. The simulation is 
implemented in COMSOL Multiphysics. 
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conservation, Stream lines Diffusion. 
 

1. Introduction 
 

 
In this model, a nonlinear term is added to the 
Navier-Stokes equations to take into account the 
effect of nonlinearity in the compressible flow. 
In this problem in particular during the process 
empty areas of particles called singularities 
appear, ie. when the volume fraction of the 
dispersed phase is zero caused for the gas 
velocity. This is why there  are serious 
theoretical problems upon convergence in the 
solution. Because of difficulties encountered in 
the model, it there is not an exact solution. In this 
paper we have developed a weak solution based 
on the results found in the literature [2]. This 
contribution is complemented by the 
construction of a numerical scheme for the 
quantitative study of the problem. This includes 
the formulation of decoupling techniques. The 
solution of the variational problem in  space-time 
we realized the  discreta  inestability in time 
during the process. To overcome this difficulty 
we have used  the Galerkin method with a 
numerical technique to capture the 
discontinuities in the Stream Lines Difussion 
(SD) with finite elements of type P1 + P2. We 

have built a new numerical model evolutionary 
for hydrodynamic volume fraction of solids and 
speed-gas in the simulating of the reactor with 
COMSOL Multiphysics [3] for the effective 
simulation of the evolutionary problem. 
 
 
1.1 Physical Model 

 
Assuming the model of the problem of phase 
solid-gas two-phase flow is then isothermal from 
a regularization free boundary problem which 
arises after a calculation model asymptotic 
phases, due to the steep gradient of solids 
concentration representing fluidization process in 
all its magnitude, this means building a whole 
mathematical methodology and regularization of 
singularities during the development of the 
problem of mixing. From a suitable proposal for 
the state equations and constitutive properties 
depend viscous stresses. In this way you can get 
the convergence of the approximation scheme. 
This phenomenon of hydrodynamic considered 
dense phase (solid particles) coexists with a 
continuous phase (gas), may originate 
suspensions stationary (stationary cloud) of 
particles in the gas. The purpose of this section is 
to model the transport of the solid particles from 
one zone to another to generate a cloud of 
particles, which fact means that the gas-solid 
system behaves like a viscous fluid 
macroscopically high temperatures and 
isothermal mode. Studies on gas-solid system in 
bed chamber, the formation and evolution of the 
bubble size is very important [2] since it is an 
indication that there is instability in the fluid bed 
chamber. If we consider a reference volume D, 
then from the laws of conservation of total mass 
and momentum for the solid and gas phases, we 
obtain a system of equations Navier-Stokes 
compressible flow Non- linear. 
Gas phase: 
 
t n+div(nu) = 0                                            (1.1) 
t(nu)+div(nuu+pgI)=div(2gnD(u))+ng-
qm(uv)                                                           (1.2) 
 



 

Solid Phase: 
t m+div(mu) = 0                                           (1.3) 
t(mv)+div(mvv+ppI)=div(2pmD(v)) 
+mg+qm(u-v)                                                (1.4) 
where: n = g: specific mass of the gas phase m 
= p(1-): particulate phase specific mass, 
[*,1]: porosity (gas volume fraction), 
*(0,1),  = 1-: Particle concentration,  i.e 
volume fraction occupied by particulate matter, u 
and phase velocities of gas and particles, ph y pc: 
Hydrodynamic pressure for collisional pressure 
gas phase to particle phase. q=q():Friction 
between phases g y p: kinematic viscosities of 
gas phase and particle phase, considered constant 
in this model g y p : densities of the gas phase 
and particle phase Assuming Newtonian 
behavior of the biphasic mixture (valid for low 
volumetric concentrations of solid particles), is 
used the stress operator:  
D(w) = ½[grad(w)+(grad(w))T]                   (1.5) 
Assuming the existence of an indicator that 
measures the ratio of proportionality between the 
densities of the two phases, in particular the 
parameter   such that  0<<<1.   
 = g/p,  =p ; n = n(), m = m(), u = u(), 
v = v(). When 0, result the following  
mathematical model which is compressible 
apparently. 
 t+div(v) = 0           (1.6) 
t(v)+div(vv) + P = div(D(v))+ g  (1.7) 
ph = -q()(u-v)           (1.8) 
div((1-)u+v) = 0          (1.9) 
siendo P = pc+ph. 
 
1.2 Equation of state 

 
pc()=oexp[k/(*-)] o1, 0  *<1 (1.10) 
 
Equation for the drag force between phases: 
 
q() = Cq/(1-)s, s >0, s[1.4, 3.6]     (1.11) 
 
2. Statement of Problem 
Let t an open subset of [R3

+ x [0,>],  

0 = {x = (x1, x2, x3) R3/ x3 = 0},                (2.1) 

L = {x = (x1, x2, x3)R3/ x3 = L, 0<L<},   (2.2) 
The problem is to find the volume fraction of 
particles C1(t )C0( t), velocity of the 

solid particles vC2,1(t)[C1,0( t)]d, gas 
velocity represented by  
u[C1,0(t )]d[C1,0( t)]d, to solve the problem 
is considered hydrodynamic pressure 
phC1,0(t) C0( t), from the state equation 
(1.6)- (1.9), assuming that d =1, 2 is the 
dimension of the space of the dependent 
variables are vector functions that vary in space 
and time, which satisfy the system of equations 
(1.6)-(2.4). 
 
2.1 Boundary conditions 
 
[(1-)u+v)]. n  = M C0( 0 x [0, >)       (2.3) 
[v]. n  = m0 C0( 0 x [0, >)                   (2.4) 
[vv + PI - D(v)]. n  = 0 C0( 0 x [0, >) 
 
2.2 Initial conditions 
 
(x,0) = 0(x) C0(R3

+ x {0})                        (2.5) 
v(x,0) = v0(x) [C0(R3

+ x {0}]d                                 (2.6) 
  
En un espacio unidimensional, introduciendo el 
vector de estado  
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such that: 
 
P1)  Ut = f(U)x+G(U)x = S(U)                       (2.7) 
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Where: 
: Dynamic viscosity (considered constant) 



 

)(0 tM : represents the incoming gas flow (air) 
in 0.  This data is known. 
Air is passed through the bottom combustion 
chamber through a distribution plate with 
multiple nozzles to be bubbled the bed holding in 
suspension. The residue is roughly 2 -3% is the 
total bed weight. 
To establish a numerical model, the initial and 
boundary conditions in particular are given by: 
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4.  Numerical aproximation 
 
Consider an weak one dimensional  formulation 
of the problem to obtain solutions with less 
regularity of the required. 
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choose  xi-1/2 , xi+1/2  <0,L>  and tj , tj+1  <0,T>, 
to T<. 
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The discretization of the time variable is done in 
[5] using the explicit Euler method. Spatial 
integration is approximated by the midpoint 
method. Then the discrete problem, P1 is 
expressed:  
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m0, t>0, tm = mt, Um=U(tm) y Fm(tm) 
t H/max{v+c, v-c } 

 

The spatial discretization of the computational 
domain [0, L] consists of M elements. 
Between prototype model and geometric 
similarity exists when the relationship between 
all dimensions corresponding to the model and 
prototype are equal kinematic similarity exists if 
the path of the moving particles are 
geometrically similar counterparts and the 
relationship between the particle velocities are 
homologous equal, between two kinematically 
similar systems exist geometric and dynamic 
similarity if the relations between the forces 
counterparts in the model and prototype are the 
same. The forces may be a combination of the 
viscous forces, due to pressure forces, 
gravitational forces, forces due to surface tension 
and inertial forces. The problem in 
unidimensional space  you can see that 
converges [5] with regularization of Harten Van 
Leer. 
 
System Diffusive convective flow dimensional 
reagent [3]. Conservation system compressible 
dimensional Navier-Stokes can be expressed in 
its compact form and be almost linearized 
conservative as seen in the bidimensional case, 
introducing a vector function of states   , 

1 2( , )v v v


, thus the preservative system in 
form convective-diffusive flow-reactive to 

1p   and is expressed as: 
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5. Use of COMSOL Multiphysics 
 
In the two-dimensional case, after a process 
dimensionless [5] and then being obtained its 
weak formulation, the domain is located in a 
rectangular geometry region ΩT = 
((0,L)x(0,H))x[0,T), has: 
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(2.9) 

 
as shown in Figure 1 with dimensions L as the 
length of the base and in particular H = 2 is the 
height of the reactor. Initial conditions are 
considered in t = 0 the step function and rect. 
The boundary conditions for input the gas is 
inhomogeneous Newman type and elsewhere of 
the reactor homogeneous wall type in the rest of 
the border. The function for mixing flow, speed 
and pressure obtained with the sliding-type 
model Hadamard and the condition is considered 
homogeneous boundary Dirichlet output. Using 
COMSOL under study non stationary, i.e., time 
dependent. The features modeling geometry is 
building the Bézier Polygon. Adding an new 

meshing sequence and considering the boundary 
layers and free triangular in the boundary free 
problem and refinement. For that, we use the 
mesh toolbar. For the solution of system PDE 
with COMSOL Multiphysics Solve and using the 
weak form using the finite element method P1 + 
P2 and stabilization techniques as Streamline 
Diffusion (SD) ([3]-[4]). Then, the problem time 
dependent solver with IDA which use variable 
order variable step zise and rect,  known 
Backward Differentiation Formulas (BDF) 
method.  
Finally, quase linear systems solvers with 
PARDISO method. The convergence of the 
numerical scheme parameters depends 
preconditioned and the rearrangement of the 
matrix, PARDISO factorization method.  
 
6. Results 
 
The results shown are coal waste assumptions 
regarding the parameter in the order of 10-4  

 

 
Figure 1.  The axial section of the fixed bed reactor is 

represented in the XY plane. 
 

 
Figure 2. Gas velocity through a nozzle in the bed 

 



 

 

 
Figure 3. Pressure stream lines in the bed 

 

 
Figure 4. Speed and volume fraction in a reactor 

of N-nozzles. 
 

 
 
7. Conclusions 
 
Treatment was performed for decoupling 
asymptotic variables system, generating the 
formulation of a boundary value problem and 
value initial associated with a system of 
nonlinear regularized conservation, expressed in 
terms of a set of partial differential equations of 
type Navier Stokes compressible viscous flow 
and appearance for the variables conservative 
such as speed of flow, bulk density and overall 
pressure. [5]. 
 
This work contributes to the knowledge of 
numerical techniques that are very important in 
order to predict the optimal size for fluidizing 
solid particles in multiphase flow models. The 
detailed information will be given at the 
conference [4], [5].   
 

It has built an algorithm of the solution process 
of a non-stationary mathematical model on a 
regular domain spaces evolutionary one and two 
dimensions of the problem of gas phase mixture 
a boiler solids fluid bed system. 
 
In the two-dimensional case approximates the 
solution of the problem with the method 
Galerkin (SD) and a difference scheme (BDF) 
for the variable explicit Capture and temporal 
discontinuities of singularities in the streamlines 
of the convective flow, can be stabilized with a 
mesh refined time step evolution with close to 
10x10-3 and side length element, maximum and 
minimum 1.5x10-4 and with a resolution of 0.25 
curvature. 
 
Can be interpreted four characteristics regarding 
speed, these are: A surface speed which occurs 
when in the vicinity of the column The section 
shown in the spectrum of the color palette, where 
no particles (no red) and only gas flows 
(presence of blue), a speed minimum fluidization 
of the results observed with the increase in the 
flow in bed, manifests a state of suspension 
caused by the upward flow and gas by multiple 
nozzles. This flow creates drag force (inertial 
force) which balances gravity and terminal 
velocity which is manifested in the rate of free 
fall of the disperse phase through the fluid and 
when it stays away column environment. The 
minimum speed is observed when bubbling the 
first bubble appears, this is important because it 
causes the mixing of particles and particle 
expansion chamber LF. 
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