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Abstract: In this project a two dimensional second order 

nodal and linear edge elements programming model for 

homogeneous waveguide is developed and simulated in 

Matlab software Environment. The objective is to reduce or 

eliminate spurious solutions and to cater for any arbitrarily 

shaped waveguides using triangular edge elements. The 

formulation is developed using the E-Field and to make use 

of the edge variables in the Transversal-Plane and the node 

variables in the Longitudinal-plane. The validity and 

effectiveness of the proposed method are investigated and 

compared with the commercial software Comsol 

Multiphysics and analytical solution found in literature. The 

proposed method is capable of dealing with multitude of 

configurations with reduced computational complexity and 

time due to the considerable reduction in mesh size and 

shape function order.  
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Edge Element  

 

1. Introduction 
 

As a result of the vast variety of practical applications of 

the dielectric filled waveguide in microwave and optical 

frequencies, the development of methods to solve the 

associated electromagnetic field problems has attracted the 

attention of many researchers. The finite-element method, to 

compute accurately the behavior of the waveguide with 

arbitrary cross section, has been widely used [1]–[7]. Nodal 

based calculations encounter some short comes such as 

appearance of spurious solutions, inconvenience of 

imposing boundary conditions at material interfaces and 

difficulty in treating conducting and dielectric edges and 

corners due to the field singularities [8]. Avoiding all these 

shortcomings redirected attentions toward new approaches, 

beyond simple modifications, leading to a new era called 

vector basis or edge elements. Edge element wave analysis 

is essential to evaluate the propagation characteristics of 

microwave and optical waveguides with arbitrarily shaped 

cross sections. Constant edge elements for transverse 

components of the electric or magnetic field and linear 

nodal elements for the axial one has been previously used 

for solving directly the propagation constant [9]-[11]. This 

approach provides a direct solution for calculating the 

propagation constants [10] avoiding spurious solutions. 

However, the accuracy of the finite element analysis using 

the lowest order elements is, in general, insufficient [12]. In 

this study, to enhance the accuracy and faster convergence, 

a vector finite element method with the second-order nodal 

elements is formulated in details. It is a combination of 

linear edge elements for transverse components of the 

electric field and quadratic nodal elements for the axial one. 

Furthermore, the accuracy of this approach is investigated 

by calculating the propagation constant of waveguide with 

numerical examples.   

 

2. Basic Equations 
 

 Consider an arbitrarily shaped metal dielectric. This 

waveguide is assumed to be uniform along its longitudinal z 

axis. Maxwell curl equations for time-harmonic fields are: 

 

                                                          (1) 

                                                             (2) 

 

where the vectors E and H are the electric and the 

magnetic-field intensities, respectively.   is permittivity and 

   denote the permeability, which are assumed to be 

constant in waveguide.   is an angular frequency. From (1) 

and (2), we construct: 
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By taking the curl of (3) and (4), and then substituting 

into (1) and (2), the following common curl-curl equation 

for E is obtained: 

 

  (
 

 
   )    

                                                (5) 

 

where    is the free-space wave number and Ω is the 

waveguide cross section. An appropriate boundary 

condition must be satisfied by the field vectors: 

                                                                          (6) 

  (   )                                                             (7) 

where n is a surface normal unit vector.    is electric 

wall and     is the magnetic wall. 

The variational principal for this problem is given by: 

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston

mailto:arab-salmanabadi.homa@polymtl.ca


 

  ( )                                                                           (8) 

                                                                        (9) 

 

where 

 

 ( )  
 

 
∬ [

 

 
(   ) (   )    

      ]  
 

 
     (10) 

 

By assuming z is the direction of propagation we will 

have  (     )   (   )       where    is the 

propagation constant, so (10) can be written as: 
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where    denotes the transverse del operator,    denotes 

the transverse component of the electric field, and    the z-

component of the field. This functional can be discretized to 

yield an eigenvalue system that can be solved for   
  for a 

given    [8]. 

 

3. Finite element formulations 

 
The electromagnetic fields have to be tangentially 

continuous across material interfaces. In the edge element 

[13]-[20], the tangential continuity can be straightforwardly 

imposed.  

 

3.1 Triangular Edge Elements 

The cross section of the waveguide is subdivided into a 

finite number of triangular elements. For the second order 

nodal configuration there is one node in between each 

corner nodes. The node number and the corresponding node 

coordinate at each vertex are assigned as 1, (x1, y1), 2, (x2, 

y2), and for 3, (x3, y3), respectively. The direction of edges 

is considered from lower value node to the higher one as 

shown in Fig. 2. The corner points 1 to 3 are for the axial 

component Ez, while the side points 4 to 6 are for the 

tangential component of Ez. The axial component Ez is 

approximated by a complete polynomial of second order.  

3.2 Finite-Element Discretization 

For solving eq. (11) Lee et al [21] introduced the 

following transformation of variables: 

 

                                                                                  (12) 

 

Substituting eq. (12) into eq. (11) and multiplying it by 

  
  resulted into: 
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By subdividing the cross sectional area   into small 

triangular elements, M elements, within each element the 

vector transverse field     and the longitudinal component 

   can be expanded using the conventional node-based 

interpolation functions: 
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By substituting these into eq. (13) one obtains: 
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where the elemental matrices are given by 
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where    is the area of the elements. Both permittivity 

and permeability are constant within the element and can be 

evaluated analytically. [   
 ]  and [   

 ] formulations for 

second order elements are [8]: 
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By applying Ritz procedure the generalized eigenvalue 

problem is obtained: 
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                       (22) 

 

By applying second order formulation for triangular 

elements, the interpolation functions will be: 
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In the above,   
  are given by 
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In the edge element basis function formulation, the 

reference direction is usually based on the global node 

numbers at the end point of the corresponding edge. One of 

the problems which may occur in one or several basis 

function of an element that share an edge with another one 

is the reverse direction of the common edge with respect to 

each other. The solution for this problem is to sort the nodes 

of all elements in ascending order so the basis function will 

be defined as below: 

 

  
        (           )                              (26.a) 
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By considering following integrals of a vector wave 

equations [8]: 
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By using eq.23 and eq24 and eq.27 along with vector 

interpolation function  [   
 ]  matrix could be obtained as 

follow: 
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Fig. 1 Triangular element with linear edge and quadratic nodal 

element. 

 

4. Numerical examples 

 
Fig. 2 shows the cross section of the circular 

waveguide bounded by a perfect conductor filled with 

air with relative permittivity and permeability of 

approximately 1. The cross section of the circular 

waveguide is subdivided into 2048 triangular elements 

as shown in Fig. 3. Cut off wavenumber versus modes 

for linear edge element and quadratic nodal and lowest 
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order nodal has been plotted in Fig 6. In order to 

illustrate the accuracy of this approach, the cut off wave 

number    of a cicular waveguide with unity radius are 

compared with analytical result [22] and hybrid first 

order, shown in Fig. 4. Notably, hybrid second order 

represented a higher accuracy than hybrid first order. 

The eigenvectors for some of the modes have been 

calculated for the electric field of corresponding modes 

Fig. 5. 

 

 
Fig. 2, Cross section of circular waveguide with radius r. 

 

 

 
Fig. 3. Circular waveguide element division. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table1. Comparison between cut-off wave number for circular 

waveguide. 

 

Mode Analytical[8] MatlabCode  Comsol 

TM10 2.405 2.406 2.411 

TM11 3.832 3.839 3.841 

TM12 5.136 5.154 5.159 

TM13 6.380 6.418 6.433 

TM20 5.520 5.543 5.560 

TM21 7.016 7.065 7.083 

TM22 8.417 8.503 8.522 

TM23 9.761 9.892 9.941 

 

 

 
Fig. 4. Comparison between first order and second order nodal 

with edge element analysis and analytical results 
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Fig. 5. Field configuration of some modes for circular 

waveguide. 

 
Fig. 6, Cut off wave numbers for circular waveguide, a) using 

first order nodal and linear edge element, b) using second order 

nodal and linear edge element.  

 

5. Conclusion 

 
A simple and effective finite element method for the 

analysis of microwave and optical waveguides was 

investigated using edge element method with the 

second-order mixed-interpolation-type triangular 

elements. It is a combination of linear edge elements for 

transverse components of the electric and quadratic 

nodal elements for the axial one. To eliminate spurious 

solutions and to be applicable for different shaped 

waveguides, triangular edge elements were utilized. An 

eigenvalue equation derived from the use of mixed-

interpolation-type elements provides a direct solution for 

the propagation constant. The accuracy of this approach 

is investigated by comparing it with analytical results 

found in literature [8], Comsol software and first order 

hybrid. Notably, hybrid second order represented a 

higher accuracy than hybrid first order. 
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