Optimal utilization of a Rail gun

- Rail gun - Electrically powered gun that accelerates a conductive projectile along magnetic metal rails.

- Military applications-Weapons with no explosives.
- Space applications-Non rocket space launch.

Cheap and efficient.

Issues

- Physical Limitations
- Velocity Skin Effect
- Friction Losses
- Magnetic Flux Leakage
- Plasma restrike
- Electro migration

Limitation on Current Density

- Melting point of material puts limitation on current density.
- Assumptions-Input energy is used to drive the armature and in heat dissipation.
- Equations

$$
\begin{aligned}
& P=i^{2} R=i^{2} \frac{\rho(2 x+a)}{A} \quad x=\frac{1}{2}\left(\frac{B i a}{m_{0}}\right) t^{2} \\
& E=\left(2 m_{r} s_{r}+m_{0} s_{a}\right) \delta \theta
\end{aligned}
$$

- Solving these equations yields

$$
J=\frac{i}{A}=\left[\frac{\sqrt{2 B a}\left(2 m_{r} s_{r}+m_{0} s_{a}\right) \delta \theta}{\sqrt{A m_{0}}\left(\frac{4}{3} \rho_{r} L^{3 / 2}+2 \rho_{a} a L^{1 / 2}\right)}\right]^{2 / 3}
$$

Velocity Skin Effect

- Major reason for causing damage to the gun
- Result of sliding contact between armature and guns.
- Spike in current density at contact that leads to melting
- Solution-Addition of an additional layer of high resistive material.
- Reduces magnitude of current density as well as removes contact of between materials.

Magnetic levitation

- Friction between armature and insulated base results in wear and tear and also decreases the projectile velocity.
- Solution-Additional external magnetic field that result in an upward force.
- Results in armature levitation by counter balancing weight and reducing the contact forces.

Flux Leakage

- Magnetic flux leakage affects operation of circuits in the vicinity of the rail gun.
- Solution-Introduce a magnetic wrap around the rail gun to restrict the field inside the wrap.
- Wrap was chosen to be Nickel A because of its low skin depth.

Thank You

