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Abstract: This paper addresses the study of 
thermal behaviour of thermoset polymer matrix 
filled with microparticles. A numerical model 
was developed with COMSOL Multiphysics to 
get a random spatial distribution of fillers in a 
representative volume element (RVE). This 
model was then compared to an analytical 
reference model (Hamilton model) and 
experimental results. This comparison highlights 
a good correlation between analytical and 
numerical models and a small divergence with 
experimental results. 
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1. Introduction 
 

Most of composites researches have been 
conducted on weight loss on structural 
equipments. However, other applications lead to 
researches focused on onboard equipments 
which are in contact with electrical components 
and need to be thermally conductive. 
This work is a part of our on-going research in 
the frame of the THEOREM project. This project 
leaded by THALES Systèmes Aéroportés aims 
to develop a hybrid composite material made of 
a polymeric matrix filled with micro and 
nanoparticles and reinforced with long carbon 
fibres. This material should exhibit high thermal 
conductive properties. 

The study of the improvement of thermal 
conductivity in a thermoset matrix was the first 
step of this collaborative project. 
Various kinds of candidate fillers were examined 
on the basis of the thermal conductivity in order 
to determine the mass fraction to be introduced 
in the matrix to get the desired thermal 
conductivity. 
 
2. Materials and Experiment  
 
 The thermoset matrix used for this 
preliminary study is the epoxy system LY556 

(prepolymer), D230 (curing agent) manufactured 
by Hunstman. This thermoset matrix was filled 
with aluminium macroparticles (Z600) which 
were purchased at Toyal. 
 Filled prepolymer (LY556) masterbatches 
were obtained using a pale mixer with an initial 
filler mass fraction of 40%. Samples from 
masterbatches were diluted and mixed with a 
planetary mixer in order to get samples with 
filler mass fraction ranging between 0wt% and 
70.5wt%. The curing agent was poured in the 
planetary mixer after the fillers/resin (i.e. 
prepolymer) mixing stage. 
 Small blocks (80x10x3 mm) of these filled 
epoxy matrices were cured in an oven for two 
hours at 80°C plus one hour at 120°C. Pellets 
were cut out from those blocks and submitted to 
a thermal diffusivity measurement performed on 
a NETZSCH Nanoflash LFA 447. The thermal 
conductivity is determined by the equation (1). 

 ρCpa=λ ..  (1) 

where λ is the thermal conductivity of the 
sample, a is the thermal diffusivity of the 
sample, Cp is the specific heat capacity of the 
sample and ρ is the density of the sample. 
Table 1 gathers experimental values of thermal 
diffusivity and thermal conductivity of samples 
(with standard deviation) filled with aluminium 
particles as a function of particles volume 
fraction. 

Volume 
fraction vp 

(%) 

Thermal 
diffusivity 

(mm2/s) 

Thermal 
conductivity 
(W/(m.K)) 

0 0.140 (0.005) 0.207 (0.017) 

5 0.178 (0.012) 0.270 (0.026) 

15 0.270 (0.009) 0.380 (0.003) 

30 0.415 (0.005) 0.597 (0.004) 

50 0.788 (0.003) 1.270 (0.042) 
Table 1. Gathering of experimental results – 

Coefficients of thermal diffusivity and conductivity as 
a function of particles volume fraction (Al particles)  



 

3. Analytical models 
 
 The ultimate aim of this research program is 
to get a model enabling to understand the 
thermomechanical and the thermal behaviours of 
carbon fibres composites with macro or 
nanoparticles filled polymeric matrix. 
The first step of this work consisted in modelling 
the behaviour of a representative volume element 
(RVE) of the filled epoxy matrix. 
Analytical models defining thermal conductivity 
were investigated. Models considering a random 
dispersion of spherical particles were chosen. 
Those models were divided in two groups: those 
considering a perfect interface between the fillers 
and the polymeric matrix and those which are 
hypothesizing an imperfect interface. In this later 
case, this means that a thermal contact resistance 
between materials will be considered. 
 In the case of perfect interface, models 
considered were: 

• Effective medium model [1] 
• Hamilton-Crosser model [2] 
• Lewis-Nielsen model [3, 4] 
• Pal model [5] 

 In the case of imperfect interface, models 
considered were: 

• Hasselman and Johnson model [6] 
 
3.1. Effective medium model 
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where λe is the effective thermal conductivity of 
composite, λm is the thermal conductivity of 
matrix, λp is the thermal conductivity of particles 
and vp is the particles volume fraction.  
 This model defined by equation (2) is valid 
for small volume fraction (vp(%)) and only for 
spherical particles. 
 
3.2. Hamilton-Crosser model 
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where λc, λm, λp are respectively the coefficients 
of thermal conductivities of composite, matrix 
and particles , vp is the particles volume fraction 
and n is a shape factor. Factor n depends on the 
sphericity of the particle. For a spherical particle 
n = 3. 
 In this model, defined by equation (3), the 
geometric aspect of particles was taken into 
account with the factor n. 
 
3.3. Lewis-Nielsen model 
 

 













− ψv B1

v B A+1
λ =λ

p

p
mc  (4) 

 

with 

A

1

 = B

m

p

m

p

+

−








λ
λ

λ
λ

 (5) 

 

and 











 −
2

1
1

m

m+ = ψ
φ

φ
 (6) 

where λc, λm, λp are respectively the coefficients 
of  thermal conductivities of composite, matrix 
and particles , vp is the particles volume fraction 
and Φm is the maximum packing fraction (in 
volume) of dispersed fillers. Coefficient A 
defined in equation (7) is dependent on Einstein 
generalized coefficient kE which depends itself 
on shape and orientation of particles.  
 

 1−Ek = A  (7) 

 
 In the case of random packing of spherical 
particles A = 1.5 and Φm = 63.7 vol%. 
 In this model defined by equations above, the 
geometric aspect of particles and their 
distribution in the matrix was taken into account. 
 
3.4. Pal model 
 
 The Pal model has the same definition as the 
Lewis-Nielsen model. It only differs in A value. 
In this case A = 2. 
 



 

3.5. Hasselman and Johnson model 
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where λc, λm, λp are respectively the coefficients 
of thermal conductivities of composite, matrix 
and particles, vp is the particles volume fraction, 
a is the particle radius and hc is the thermal 
boundary conductance which represents the 
interfacial thermal resistance. 
 This model, defined by equation (8), is valid 
for particles assumed well dispersed and in low 
concentration (i.e. no contact between particles). 
 
3.6 Analytical results 
 
 To compare the changes in composite (i.e. 
polymeric matrix + fillers) thermal conductivity 
as a function of fillers volume fraction (vp (%)), 
the epoxy matrix's coefficient of thermal 
conductivity was set at λm = 0.207 W/(m.K), 
while the coefficient of thermal conductivity of 
aluminium powder particles was set at 
λp = 237 W/(m.K). For aluminium particles their 
radius was considered constant: a = 3 µm. vp 
value was varied from 0% to 95%. 
For Hasselman model the thermal boundary 
conductance hc depends on matrix, particles and 
interface geometry. An exact value of this 
parameter was quite difficult to define. 
hc = 1.10 -7 W/K was determined according to 
[1]. 
 

 
Figure 1. Comparison of the changes in composites 
coefficient of thermal conductivity as a function of 

particles volume fraction (vp (%)) 

 The results in Figure 1 clearly show that 
effective medium model and Hamilton-Crosser 
model have the same trends. Furthermore, 
Hamilton-Crosser model is close to Hasselman 
and Johnson model while particles volume 
fraction vp remains lower than 60%. Lewis-
Nielsen and Pal models are limited to a 
maximum value of packing fraction of particles 
which is 63.7 vol% in our case. 
 Despite curves plotted for vp value up to 
95%, it should be kept in mind that from 
physical point of view, given that i) aluminium 
particles are considered as spheres and ii) all 
particles are assumed to have the same radius 
(3µm), the maximum particles volume fraction 
would be 63.7 vol% in the case of random 
dispersion (maximum packing factor). 
 
4. Numerical models 
 

Experimentally the fillers were dispersed by 
a mixer. This dispersion was considered as a 
random distribution. To model a representative 
volume element (RVE) of the filled epoxy matrix 
with COMSOL the main challenge was to get a 
spatial distribution of doping particles (Al) in the 
RVE. To this end, a random function (available 
under Java®) was used to generate points 
considered as the centres of particles. Particles 
were modelled as spheres and their volume was 
determined by the RVE and the fillers volume 
fraction. All the particles have the same radius 
but as it mentioned below changes in the radius 
were studied. 

A non-penetration parameter was determined 
which allows only contacts between spheres. 
Heat equation was applied in the model in order 
to get the thermal conductivity of this isotropic 
doped matrix. The Fourier's equation (9) was 
used in COMSOL to define heat transfer:  

 Tgradλ= hS −φ  (9) 

where ΦS is the surface heat flux, λh is the 
homogenized thermal conductivity of doped 
matrix and T is the temperature. 
 
4.1. Algorithm definition 
 

The definition of the algorithm used to 
generate the geometry on COMSOL was 
explained on Figure 2.  This algorithm was 



 

developed on Java® and compiled to obtain a 
COMSOL file. 

 

 
Figure 2. Algorithm definition 

 
4.2. Sensitivity study 
 

This program was tested to verify its limits 
and a sensitivity study was developed to 
optimize the model boundaries. 
 To choose the best sizes of RVE and mesh 
different parameters were varied: the RVE size 
(i.e. cube edge length), the particles radius, the 
particles volume fraction and the mesh size. To 
validate the model, the thermal conductivity has 
to remain the same independently to those 
parameters. 
 The thermal conductivity values were 
compared as function of: 

• Particles volume fraction vp: 1%, 3%, 5%, 
and 10%. 

• Particles radius R: 1 µm and 3 µm. 
• RVE size (i.e. cube edge length) L: 

25 µm, 50 µm, 90 µm and 100 µm. 
• Mesh size: mesh size was varied from 

coarse to extra fine, this mean the total 
number of tetrahedral elements was 
varied and the total volume (spheres + 
cube) was measured thus an average 
volume per element was defined. That 
means higher is the average volume per 
element coarser is the mesh size. 

 
As shown in Figure 3, in the case of the 

sensitivity study, an initial temperature T0 = 0 K 
and a surface heat flux ΦS = 1W/m2 were defined 
as input parameters and boundary conditions 
according to equation (9). The thermal 

conductivity of the model was then gathered 
from this same equation. 
 

 
Figure 3. Boundary conditions 

 
Figure 4. Evolution of thermal conductivity as a 

function of mesh size and RVE size – R = 3 µm and 
vp = 3% 

As shown in Figure 4 it can be noticed that 
the coefficient of thermal conductivity is not 



 

strongly impacted by changes in RVE size and 
mesh size (i.e. average volume per element). 
Further to this comment the cube edge length 
(i.e. RVE size) was fixed to L = 25 µm for 
decrease the numbers of element, thus the 
computing time.  

In Figure 5 it was observed the influence of 
the particles radius on the thermal conductivity 
and it can be highlighted that this coefficient was 
not impacted by the variation on the radius value. 
 

Figure 5. Evolution of thermal conductivity as a 
function of mesh size and particles radius R – vp = 3% 

and L = 25 µm 

 As shown in Figure 6 and as expected, 
increasing the particles volume fraction results in 
an increase in the coefficient of thermal 
conductivity. 
 

Figure 6. Evolution of thermal conductivity as a 
function of mesh size and particles volume fraction vp 

– R = 3 µm and L = 25 µm 

 Concerning the method, i.e. the finite 
element modelling, it was observed that this 
modelling becomes quickly limited when 
increasing the particles volume fraction vp (%). 
Indeed, for particles volume fraction higher than 
15% meshing becomes very complex or even 
impossible due to space between particles which 

becomes too small. To conclude, parameters 
were fixed by this study: 

• A cube edge length of 25 µm  
• A coarse mesh size 

The number of element was decreased by those 
parameters values, therefore this involve a faster 
computing time and no effect on the value of the 
thermal conductivity coefficient. 
 
4.3. Numerical results 
 

In order to perform a comparison between 
numerical, analytical and experimental results, 
the following input parameters were chosen for 
finite element modelling: 

• RVE: cube edge length L = 25 µm 
• Initial temperature: T0 = 293.15 K 
• Surface heat flux: ΦS = 2.106 W/m2 
• Thermal conductivity of matrix: 

λm = 0.207 W/(m.K) 
• Thermal conductivity of particles: 

λp = 237 W/(m.K) 
• Radius fillers: R = 3 µm 
• Particles volume fraction: 

vp = 3%, 5%, 10% 
 

 As shown in Figure 7, the gradient 
temperature induced by the surface heat flux is 
given by this simulation (here in the case of 
vp = 5% and R = 3 µm). The homogenized 
thermal conductivity was deduced according to 
equation (9). 
 

 
Figure 7. Temperature distribution (K) for vp = 5% 

and R = 3 µm 

As shown in Figure 8, it can be noticed the 
influence of particles on the isothermal contours. 



 

 
Figure 8. Isothermal contours (K) vp = 5% and 

R = 3 µm 

 As shown in Figures 9 and 10 the numerical 
model is near analytical models. 
 

Figure 9. Comparison of thermal conductivity values 
as a function of vp (%) between numerical and 

analytical models 

Figure 10. Detail of the previous comparison 

As defined in Section 3.6., Hamilton and 
effective medium models have the same trends. 
Hasselman model was really closed to the two 
previous models and its definition is the most 
complex due to the thermal boundary 
conductance value (i.e. hc) which is complicated 

to define. According to those data, Hamilton 
model was considered as the analytical reference 
model. 
 
5. Discussion 
 
 In Figure 11 and Table 2, it was compared 
the thermal conductivity values of Hamilton 
model, COMSOL simulations and experimental 
results. As plotted in Figure 11 it can be noticed 
that experimental thermal conductivity values 
diverge from Hamilton model and COMSOL 
simulations values. 

 
Figure 11. Comparison of thermal conductivity values 
as a function of vp (%) – Hamilton model, COMSOL 

simulations and experimental results 

vp 
(%) 

Hamilton 
model 

(W/(m.K)) 

Experiment 
(W/(m.K)) 

COMSOL 
(W/(m.K)) 

0 0.207 0.207 (0.017) 0.207 
3 N.D N.D 0.226 
5 0.240 0.270 (0.026) 0.242 

10 0.276 N.D. 0.286 
15 0.316 0.380 (0.004) N.D 
Table 2. Thermal conductivity values for Hamilton 

model, experiment (standard deviation) and COMSOL 
simulation (N.D.: No Data) 

 This difference could be explain by the fact 
that experimental thermal conductivity is 
calculated, thus depends on specific heat 
capacity Cp and density ρ as defined in equation 
(1). 
Those parameters were determined by 
approximate methods: 

• For Cp by the Nanoflash device (ratio 
method) 

• For ρ by a ratio between the mass of the 
sample and the shape of the sample 
which was considered as a perfect 



 

cylinder, thus an approximate volume 
was obtained. 

 
6. Conclusions 
 
 A program to get a random spatial dispersion 
of spherical microparticles in a representative 
volume element has been developed. This three-
dimensional modelling enables the thermal 
properties of a polymeric matrix filled with 
particles (it can be either micro or nanoparticles) 
to be predicted. It should be mentioned that the 
capabilities of a conventional PC (i.e. 16 Go 
RAM) act has a hindrance for finite element 
computation. Effectively increasing the particles 
volume fraction in the RVE results in an 
exponential increase in the number of elements 
and quickly limit the use of finite element 
method (i.e. maximum particles volume fraction 
vpMAXI(%) 15%). 
 However, from a physical point of view, this 
is not a problem. The ultimate application is to 
use a filled matrix to produce composites 
reinforced with long fibres. This means that the 
viscosity of this filled matrix has to be 
maintained as low as possible even if it is aimed 
to increase the thermal conductivity matrix, the 
particles volume fraction remains limited. 
The results of 3D finite element modelling 
exhibit a good correlation with Hamilton 
analytical model. The small divergence between 
experimental and theoretical results is attributed 
to errors in physical properties measurements. To 
verify this assumption new measurements of Cp 
by DSC (Differential Scanning Calorimetry) are 
required.  
 To improve thermal behaviour of the matrix, 
more experiments, with other types of fillers 
(including nanofillers), are in progress. In 
consequence another program will be developed, 
for other particles shape like in Figure 12, based 
on the present one. 
 

 
Figure 12. Random dispersion of ellipsoidal particles 
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