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Abstract: Worldwide attention in the 
computational modelling and simulation of the 
human intestine is increasing in order to help 
understand its complex behaviour and improve 
health [1,2,3]. Computational fluid dynamics 
(CFD) is an essential tool to understand the 
mechanics and transport phenomena of the 
intestine, thereby advancing the diagnosis and 
treatment of gastrointestinal related diseases. The 
aim of this work is to develop a computational 
model of the human duodenum. The CFD model 
couples peristaltic motions of the duodenum wall 
together with the flow of chyme, known as a 
fluid – structure interaction coupling. The fluid 
flow of chyme is described by Navier – Stokes 
equations, while the duodenum contractions are 
approximated by the smoothed Heaviside step 
function. Mixing of chyme, caused by peristalsis, 
is modelled with the particle tracing module. A 
hydrolysis of starch, producing glucose, is added 
to the convection – diffusion equation to observe 
the flux of glucose through the duodenum wall. 
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1. Introduction 
 

The human duodenum is part of the small 
intestine to the stomach through the pylorus. It 
takes the form of a C shaped tube, which is 
connected to the pancreas and mixes chyme from 
the stomach with digestive juices secreted from 
the pancreas and liver. The pancreatic juice also 
contains sodium bicarbonate, which neutralises 
stomach acid in the chyme. The pancreas 
produces and secrets a variety of digestive 
enzymes into the duodenum, which break down 
starches, lipids and proteins. The muscular layers 
of the digestive tract consist of smooth muscle 
tissue, which trigger peristaltic and segmentation 
movements. Peristalsis propels a small mass of 
digestive contents called a bolus along the length 
of digestive tract. The small intestine undergoes 

cycles of contractions that chop the bolus and 
mix the intestine contents with pancreatic juices. 
This activity is called segmentation and does not 
follow the same pattern as peristalsis [4]. 
The chyme along the duodenum-like porous tube 
is transported by peristaltic waves. Our 
simplified duodenum model consists of starch 
only, which reacts with water and breaks down 
into glucose. Produced glucose is further 
absorbed through the duodenum-like porous wall 
into the simulated bloodstream.  
Figure 1 shows geometry and boundary 
conditions of the duodenum-like porous and 
elastic silicone tube. It consists of domain 1 and 
domain 2. Domain 1 is a fluid flow channel 
made of porous and elastic silicone tube, 
whereas domain 2 represents a porous wall of the 
elastic silicone tube.   

Figure 1. Boundary conditions of the 
duodenum-like elastic silicone tube. 
 
The duodenum-like porous tube is modelled with 
the finite element method, used in COMSOL 
Multiphysics, as an axis symmetric 
computational mesh made of quadrilateral 
elements. 
 
2. Use of COMSOL Multiphysics 
 

The CFD model of the human duodenum is 
modelled with COMSOL Multiphysics 4.2a. It 
consists of five different interfaces and related 
equations found in [5], which are briefly 
explained below. 

 
The first interface, Free and Porous Media 

Flow, describes the laminar Newtonian fluid 
flow of chyme in the main flow channel, 
whereas the Brinkman equations model the fluid 
flow through the porous duodenum wall. 
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The laminar flow of chyme in domain 1 is 
described by Navier – Stokes equations and 
continuity equation 

 
ρ ∂uf / ∂t + ρ (uf ⋅ ∇) uf = 
∇ ⋅ [- p I + µ (∇ uf + (∇ uf )T] 
 
ρ ∇ ⋅ uf = 0 
 
where ρ [kg/m3] is the density of the fluid, uf 
[m/s] is the velocity vector of the fluid, p [Pa] is 
the pressure of the fluid, I [-] is the identity 
matrix, µ [Pa⋅s] is the dynamic viscosity of the 
fluid and t [s] is time. 
The fluid or chyme, together with glucose, can 
penetrate through the duodenum wall into the 
bloodstream. Thus, the Brinkman equations and 
the continuity equation are applied to the porous 
duodenum wall, represented by domain 2, as 
 
ρ / εp [∂uf / ∂t + (uf ⋅ ∇) uf / εp] = 
∇ ⋅ [- p I + µ / εp (∇ uf + (∇ uf )T] – 2µ/ 3εp (∇ ⋅ uf) I] 
- (µ / κbr + βF |uf| + Qbr) uf 
 
ρ ∇ ⋅ uf = 0 
 
where εp [-] is the porosity of the duodenum wall 
modelled with silicone tube, κbr [m2] is the 
permeability of the silicone tube, µ [Pa⋅s] is the 
dynamic viscosity of the fluid, βF [kg/m4] is the 
Forchheimer term and Qbr [kg/m3⋅s] is a mass 
source or mass sink. 

 
The second interface, Solid Mechanics, 

applies the smoothed Heaviside step function 
and external load to mimic peristaltic movements 
of the silicone tube. 
The governing equations of linear elasticity 
needed to model duodenum-like elastic and 
porous silicone tube are presented by the linear 
elastic material model and are based on 
Newton’s second law of motion 
 
ρm (∂2 udis / ∂t2) - ∇ ⋅ σ  = Fv 
 
where ρm [kg/m3] is the density of the elastic 
silicone tube, udis [m] is the displacement vector, 
σ  [N/m2] is the normal Cauchy stress tensor that 
relates stresses in the silicone tube and Fv [N/m3] 
is the body force per unit volume. 
The Cauchy stress tensor can be written 
 

σ  = j-1 F S FT 
 
where F [m] is the deformation gradient tensor, 
FT [m] is the transposed deformation gradient 
tensor, S [N/m2] is the second Piola – Kirchhoff 
stress tensor that relates forces to areas in the 
duodenum-like silicone tube and j [-] is the 
determinant of tensor F called Jacobian matrix. 
The deformation gradient tensor is defined as 
 
F = I + ∇ udis 
 
where I [-] is the identity matrix and ∇ udis [m] is 
the material displacement gradient vector. 
When the external load is applied to the silicone 
tube, the force causes deformation to the 
material. The displacement gradient is thus 
 
ε = ½ [(∇ udis)T

 + ∇ udis + (∇ udis )T ∇ udis]   
 
where ε [-] is the infinitesimal strain tensor. 
Behaviour of elastic materials is represented by 
Duhamel – Hooke’s law and relates the normal 
stress tensor to the strain tensor. Elasticity tensor 
C [N/m2] is represented by Duhamel – Hooke 
equation and is function of Young’s modulus E 
[N/m2] and Poisson’s ratio ν [-].  
The load FA,r [N/m2] in the radial direction 
applied to the elastic silicone tube is 
 
FA,r = - Lmax ⋅ load (z s, t s) 
 
where Lmax [N/mm2] is the maximum load 
applied to the silicone tube, load is the Heaviside 
function and zs [-] and ts [-] are the 
dimensionless function arguments.  
 

The third interface, Moving Mesh, adds mesh 
displacements and velocities to the existing 
model and couples the second and the first 
interfaces into the complex fluid – structure 
interaction computational model. 
Mesh deformation is caused by the load applied 
to the elastic tube and by peristaltic waves 
modelled by Heaviside function. 
 

The fourth interface, Particle Tracing for 
Fluid Flow, contributes to the duodenum model 
by tracing solid particles and their mixing with 
the fluid flow. 
The motion of particles in a fluid flow is 
described with Newton’s Second Law 
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d (mp up) / dt = FD 
 
where mp [kg] is the particle mass, FD [N] is the 
vector of the force exerted on the particle and up 
[m/s] is the velocity vector of the particle. 
The drag force is the only force acting on 
individual particle, if no other forces are applied 
 
FD = mp Fd (uf - up) 
 
where Fd [N] is the drag force per unit mass and 
uf [m/s] is the velocity vector of the fluid. 
The drag force per unit mass for spherical 
particles in a laminar flow is defined as 
 
Fd = 18µ / (ρp d2) 
 
where µ [Pa⋅s] is the dynamic viscosity of the 
fluid, ρp [kg/m3] is the particle density and d [m] 
is the particle diameter. 
 

The fifth interface, Transport of Diluted 
Species, models convection and diffusion 
phenomena inside the silicone tube and in the 
porous wall together with the simplified 
hydrolysis reaction of starch producing glucose. 
Flow of chyme includes digested starch from 
mouth and stomach and reacts inside the human 
duodenum with gastric juices and digested 
enzymes. The unconverted starch reacts with 
digestive enzymes inside the duodenum where it 
is converted into glucose. The simplified 
reaction is written as 
 
cs → cg 
 
where cs [mol/m3] and cg [mol/m3] are the 
concentration of starch and glucose. The rate of 
reaction of starch and glucose are described as 
 
- Rs = k ⋅ cs 
 
Rg = k ⋅ cg 
 
where Rs [mol/m3⋅s] and Rg [mol/m3⋅s] are the 
rate of reaction of starch and glucose and k [1/s] 
is the first order rate constant. 
The phenomena of convection, diffusion and 
chemical reactions inside the human duodenum 
are described with convection – diffusion 
equations for starch and glucose 

 
∂cs / ∂t + ∇⋅ (- Ds ⋅ ∇ cs) + uf ⋅ ∇ cs = Rs 
 
∂cg / ∂t + ∇⋅ (- Dg ⋅ ∇ cg) + uf ⋅ ∇ cg = Rg 
 
where Ds [m2/s] and Dg [m2/s]  are diffusion 
coefficients of starch and glucose and uf [m/s] is 
the velocity vector of the fluid flow. 
When diffusion and velocity are the transport 
mechanisms, the flux of glucose, through 
boundary 7 is described as 
 
- n ⋅ (- Dg ⋅ ∇ cg + uf ⋅ ∇ cg) = kg (cg,out - cg,in) 
 
where kg [m/s] is the mass transfer coefficient 
and cg,out [mol/m3] and cg,in [mol/m3] are the bulk 
concentration of glucose in the bloodstream and 
on boundary 7 as computed by the CFD solver. 
 
Table 1. Initial and boundary conditions applied to 
five interfaces modelled by COMSOL Multiphysics. 
 

Physical 
Domains 

Initial 
Conditions 

SI 
Units 

D 1,2 uz = 0 [m/s] 
D 1,2 ur = 0 [m/s] 
D 1,2 p = 0 [Pa] 
D 2 u2,z = 0 [m] 
D 2 u2,r = 0 [m] 
D 2 ∂ u2,z / ∂t = 0 [m/s] 
D 2 ∂ u2,r / ∂t = 0 [m/s] 
D 1,2 d0,z = 0 [m] 
D 1,2 d0,r = 0 [m] 
D 1 c0,s = 31.176 [mol/m3] 
D 1,2 c0,g = 0 [mol/m3] 

 
Physical 
Boundaries 

Boundary 
Conditions 

SI 
Units 

BC 2,3,5,6 p0 = 0 [Pa] 
BC 4 uw = 0 [m/s] 
BC 7 uw,z = solid.u_tZ [m/s] 
BC 7 uw,r = solid.u_tR [m/s] 
BC 4 p = p [Pa] 
BC 5,6 w0,2 = 0 [m] 
BC 7 FA,z = 0 [N/m2] 
BC 7 FA,r = FA,r [N/m2] 
BC 1 dr = 0 [m] 
BC 2,3,5,6 dz = 0 [m] 
BC 4,7 vz = solid.u_tZ [m/s] 
BC 4,7 vr = solid.u_tR [m/s] 
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BC 1,2,3,4 x’ = xc [m] 
BC 1,2,3,4 v’ = vc [m/s] 
BC 2,3,4 - n ⋅ Ds ∇ cs = 0 [mol/m2 s] 
BC 2,3 - n ⋅ Dg ∇ cg = 0 [mol/m2 s] 
BC 5,6 - n ⋅ (Dg ∇ cg  

+ uf  cg) = 0 
[mol/m2 s] 

BC 7 - n ⋅ (Dg ∇ cg  
+ uf  cg) = Ng 

[mol/m2 s] 

 
Each set of governing equations is computed 

separately in order to simplify the computational 
procedure. The Navier – Stokes equations and 
Brinkman equations from the Free and Porous 
Media Flow interface are solved together with 
the Solid Mechanics interface and Moving Mesh 
interface governing equations. The equations, 
which solve particle trajectories in the Particle 
Tracing for the Fluid Flow interface, are solved 
next. Velocity fields, needed in these set of 
equations, are used from the stored solution 
computed by the Free and Porous Media Flow 
interface. The Transport of Diluted Species 
interface uses the same stored velocity fields to 
solve convection – diffusion equations and 
compute concentration fields of starch and 
glucose in every cell of the computational mesh. 
A time dependent segregated solver solves the 
first set of governing equations defined in the 
Free and Porous Media Flow, Solid Mechanics 
and Moving Mesh interfaces. The set of 
equations, which describe particle movements in 
the Particle Tracing for Fluid Flow interface are 
solved with fully coupled time dependent solver, 
whereas the convection – diffusion equations 
within the Transport of Diluted Species interface 
are solved by direct time dependent solver. 
 
3. Results 
 

Figure 2 shows velocity snapshots of the 
fluid flow inside the duodenum-like elastic 
silicone tube, for dynamic viscosity 0.1 Pa⋅s and 
fluid density 970 kg/m3. The elastic silicone tube 
with Poisson ration 0.48 and Young’s modulus 
1.0⋅107 Pa approximates the human duodenum. 
Peristaltic waves are modelled by applying a 
physical force to the silicone tube, which is 
applied 45 mm from the lower edge of the tube 
at time 0.8 s after the beginning of the 
simulation. The full strength is reached after 0.6 
s and the load is disengaged after 3.4 s from the 
beginning of the simulation. The applied force 

needs to be strong enough to squeeze the tube 
and push the fluid flow of chyme forward at the 
same time. According to several numerical 
attempts, the most appropriate force is 1.5⋅105 
N/mm2. The direction of the fluid flow and 
peristaltic movements are from the bottom 
towards the top of the tube.  

 

a) 1.0 s b) 1.5 s 
 

c) 2.5 s d) 3.0 s 
 
Figure 2. Velocity field in the axial direction [m/s] 
represented as surface plots and spatial direction of 
velocity fields represented as vector plots. The 
snapshots are taken for the Newtonian fluid flow at 
dynamic viscosity 0.1 Pa⋅s, density 970 kg/m3, 
Poisson ratio 0.48, Young’s modulus 1.0⋅107 Pa and 
load 1.5⋅105 N/mm2 at time steps 1.0 s, 1.5 s, 2.5 s and 
3.0 s. The scale represents the minimum and 
maximum range of velocity field in the axial direction. 
 

Figure 3 gives an overview of mixing inside 
the silicone tube, by tracing particle trajectories 
from their initial to final state in the space. All 
snapshots show 74 particles released from the 
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left hand side of the grid along the axis of 
symmetry at time zero. By increasing time step 
for 0.1 s, particles move towards the right hand 
side of the tube leaving a trail to form a 
trajectory. Each point on a newly formed 
trajectory represents a new position of an 
individual particle at certain time step. Intensity 
of mixing, presented with red colour, is the 
highest below the peristaltic wave. 
 

a) 1.0 s b) 1.5 s 
 

c) 2.5 s d) 3.0 s 
 
Figure 3. Particle trajectories of the fluid flow 
represented as surface plots. The snapshots are taken 
for the Newtonian fluid flow at dynamic viscosity 0.1 
Pa⋅s, density 970 kg/m3, Poisson ratio 0.48, Young’s 
modulus 1.0⋅107 Pa and load 1.5⋅105 N/mm2 at time 
steps 1.0 s, 1.5 s, 2.5 s and 3.0 s. The scale represents 
the minimum and maximum range of particle 
velocities. 
 

Figure 4 shows the concentration field of 
glucose inside the duodenum-like silicone tube 
and inward diffusive flux of glucose through the 

duodenum-like porous wall. The reaction in this 
case study is a simplified hydrolysis reaction of 
starch producing glucose. As seen from figure 
4b, glucose is initially produced from starch in 
the region of intense mixing after the peristaltic 
wave. The production of glucose advances 
around the wave by increasing the time step and 
spreads out to the neighbouring region. The 
diffusive flux of glucose through the duodenum 
wall is the highest around 3.0 s.  
 

a) 1.0 s b) 2.0 s 
 

c) 3.0 s d) 4.0 s 
 
Figure 4. Concentration field of glucose [mol/m3] 
represented as surface plots and spatial inward 
diffusive flux of glucose through the porous silicone 
wall represented as vector plots. The snapshots are 
taken for the Newtonian fluid flow at dynamic 
viscosity 0.1 Pa⋅s, density 970 kg/m3, Poisson ratio 
0.48, Young’s modulus 1.0⋅107 Pa and load 1.5⋅105 
N/mm2 at time steps 1.0 s, 2.0 s, 3.0 s and 4.0 s. The 
scale represents the minimum and maximum range of 
the glucose concentration field. 
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4. Conclusions 
 

A computational fluid - structure interaction 
duodenum model that mimics peristaltic 
movements, chyme fluid flow, mixing and 
absorption of glucose through the porous 
duodenum wall has been developed. The future 
work will validate computational results 
obtained by the in-silico duodenum model 
against the experimental results obtained by the 
in-vitro duodenum prototype. 
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