







# Heat and Mass Transfer Modelling during Freezing of Foodstuffs

O. Rouaud<sup>1</sup>, Q. T. Pham<sup>2</sup>

<sup>1</sup>LUNAM Université, ONIRIS, CNRS, GEPEA, UMR 6144, Nantes, France, <sup>2</sup>University of New South Wales, Sydney, Australia

Comsol Conference October 10-12, Milan, Italy



# Objectives



- To develop a mathematical model dedicated to the determination of freezing rate and weight loss during the freezing of food (*in very cold environment*).
  - 2 freezing conditions studied:
     Cryogenic device with Nitrogen gas at -80°C
     Classical process with cold air at -30°C
  - Comparisons with experimental data (cryogenic freezing)
  - Focus on the influences of the external temperature and on the heat transfer coefficient



# Material



- Experiments
  - > Freezing of flat plate in an air-blast freezer
  - Freezing of plate in a cryogenic chamber (-80°C)

Flat plate of methylcellulose gel with 3 thermocouples inside:







#### Model



> 1D Heat Transfer

1) 
$$\rho_{s,app} C_{p,app} \frac{\partial T}{\partial t} = \nabla . (k_{eff} \nabla T)$$

2) 
$$C_{p,app} = C_s + X_1C_1 + X_{ice}C_{ice} - H_{1i} \frac{\partial X_{ice}}{\partial T}$$

 $+X_1C_1+X_{ice}C_{ice}-H_{1i}\frac{\partial X_{ice}}{\partial T}$  x=L/2 x=0Symmetry plane

> 1D Mass Transfer

3) 
$$\rho_{s,app} \frac{\partial X}{\partial t} = \nabla \cdot (\rho_{s,app} D_{eff} \nabla X_1)$$
 with  $X_1 = X - X_{ice}$  and  $X_{ice} = (X - X_b) \cdot f(T)$ 

$$\rho_{s,app} \frac{\partial X}{\partial t} = \nabla \cdot \left[ \rho_{s,app} D_{eff} \left[ (1 - f(T)) \nabla X + (X_b - X) \frac{df}{dT} \nabla T \right] \right]$$

> Function that takes into account the ice formation:

$$f(T) = 1 - \left(\frac{T_f - 273.15}{T - 273.15}\right) \left(\frac{T - T_{ff}}{T_f - T_{ff}}\right)$$
 if  $T_{ff} \le T \le T_f$ ; 0 if  $T > 0$ ; 1 if  $T < T_{ff}$ 



#### Model



- Boundary conditions:
  - $\rightarrow$  Evaporation (and sublimation) at the surface of food (x=L/2)
  - 1 plane of symmetry (x=0)

$$(-k_{eff} \nabla T) = 0$$
 at  $x = 0$  
$$(-k_{eff} \nabla T) = h(T - T_{amb}) + F_w(H_{vl} + f_{ice}H_{li})$$
 at  $x = L/2$ 

$$\begin{split} \left( \rho_{s,app} \, D_{eff} \, \nabla X \right) &= 0 & \text{at } x = 0 \\ \left( \rho_{s,app} \, D_{eff} \, \nabla X \right) &= -h_m \left( P_{sat} \, a_w \, - P_{sat\_amb} \, RH \right) & \text{at } x = L \, / \, 2 \end{split}$$

- Initial and external conditions:
  - Initial temperature and water content homogeneous inside the food
  - External temperature (T<sub>amb</sub>) and heat transfer coefficient (h) constant



#### Model



- Implementation in Comsol 4.2
  - Comsol interface: PDE interface chosen for the mass transfer

$$X \equiv u$$
  
 $f(T) \equiv ice3 \equiv ice(T)$   
 $D_{eff} \equiv Dw$   
 $\rho_{s,app} \equiv rho\_MS$ 

- ice(T) defined as analytic function in Model/Definitions
- Derivative of f(T) computed by Comsol:

$$\frac{\mathrm{df}}{\mathrm{dT}} \equiv \mathrm{d}(\mathrm{ice3,T})$$





#### Results



> Comparison between numerical and experimental results in the cryogenic system ( $T_{amb} = -80$ °C,  $h = 30 \text{ W.m}^{-2}.\text{K}^{-1}$ )



- > Temperature well predicted despite freezing time slightly underestimated
- Good agreement between simulated and experimental weight loss



# Results



> Influence of the heat transfer coefficient



- > Increasing h by 10% decreases the effective freezing time  $t_{\rm f}$  by 9% ( $t_{\rm f}$ : from  $T_{\rm i}$  to  $T_{\rm ff}$ )
- > Increasing h by 10% decreases the mass loss by 8%.



#### Results



Cryogenic freezing vs air-blast freezing



- Effective freezing time in cold air is 3 times higher than in the cryogenic freezer for the same h (4000 s vs 1400 s)
- Air-blast freezing: the weight loss is higher at the beginning (chilling) if h is higher
- The total weight loss at the end of freezing is less for high heat transfer coefficient because T<sub>f</sub> is reached sooner
- The weight loss is reduced in cryogenic freezer due to the very low temperature (less than 0.4% vs 1.1% for air-blast freezing)



#### Discussion



- Strong water content gradient at the surface:
  - Finer grid essential close to the surface ( $\delta x \approx 1.e-5 \text{ m}$ )



- Phase change characterized by a sharp peak (C<sub>p,app</sub>(T)):
  - Using the time dependent solver with free time steps limited to 1s to ensure the recognition of the phase change.
- Problems with discontinuities at  $T = T_{ff}$  due to the function f(T)
- Experiments: strong
   influence of experimental
   conditions (h, central
   temperature...)

### Conclusion

- Development of a mathematical model to predict the freezing time and the weight loss of food during freezing
- Model developed for non-porous food, well suited for freezing in very low ambient temperatures (high heat and mass transfer):
  - > Agreement between experimental and numerical results
- Using very cold environment reduces the freezing time and the weight loss
- High degree of dehydration at the beginning (chilling) sublimation negligible
  - Perspectives:
    - Model will be developed for porous food
    - The function f(T) has to be improved





# Thank you for your attention



