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Abstract: This paper presents a numerical study 
of the deposition of submicron charged spherical 
particles caused by convection, Brownian and 
turbulent diffusion in a pipe with a smooth wall 
and with a cartilaginous ring wall structure. The 
model is supposed to describe deposition of 
charged particles in generation 0 (trachea) of the 
human lung. The upper airways of the human 
lung are characterized by a certain wall structure 
called cartilaginous rings (fig.1) which are 
believed to increase the particle deposition when 
compared to an airway with a smooth wall. The 
problem is defined by solving the fluid flow 
problem with the aid of a low-Reynolds number 
k-epsilon model combined with a diffusion 
equation for the Brownian motion and Poissons 
equation for the electrostatic field. The 
electrostatic field is generated by the space-
charge density of the particles. Results are 
presented for generation 0, the trachea of the 
human airways. Deposition results using Comsol 
multiphysics are compared with an analytic 
solution for the case of a fully-developed 
turbulent flow in an airway with a smooth wall. 
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1. Introduction 
 
 Studies on particle transport of submicron 
particles are of high importance in the analysis of 
particle deposition in the respiratory airways, 
both for assessing health effects of inhaled toxic 
matter and for evaluating the efficacy of drug 
delivery with pharmaceutical aerosols. 
 Especially the nowadays so popular particles 
of nanometer size for the developing of new 
improved stronger materials and other 
fascinating technical applications are here of 
particular interest 

In this paper we analyze how submicron 
particles (diameter<1µm) are deposited in the 
upper airways of the upper human lung airways 

and especially we consider the effects caused by 
charged spherical particles. We also include a 
wall structure called cartilaginous rings, located 
in the upper airways of the lung. In previous 
work (Åkerstedt(2010)1,(2011)2) we have 
considered the lower airways (generation>4) of 
the human lung in which the flow is laminar. In 
the present paper we consider the corresponding 
problem for the upper airways, in particular the 
uppermost airway, the trachea (generation 0) in 
which the flow is usually turbulent. 

To find the transport and deposition in a 
given flow geometry there are essentially two 
methods. A Lagrangian approach and an 
Eulerian approach. In the first method the motion 
of the individual particles in the flow field are 
tracked. For the laminar case the flow is 
generated by the Navier-Stokes equations while 
for the case of turbulent flow some turbulence 
model is adopted. The concept is then to launch a 
large number N of particles, derive their 
individual motion and compute particle 
deposition statistics from the fraction that hits a 
wall (Högberg et al.3). To get statistical measures 
of the deposition a large number of particles (N) 
need to be simulated with an error of the 
order 1/2( )O N −

 This Lagrangian approach is 
complicated if we for instance wish to find the 
electric field and force field from a concentration 
of charged particles. Since we consider the effect 
of a distribution of charged particles, the 
Eulerian method is chosen. The concentration is 
then governed by a convective diffusion equation 
including effects from Brownian motion D  and 
migration in electric field. To include effects 
from a turbulent flow, turbulent diffusion tD  is 
added. For particles of size smaller than about 
1µm, diffusion is the only effect from the 
turbulence. For larger particles, however, there is 
also an effect from turbophoresis (Guha(1997)4), 
which is a far more difficult problem to model, 
since anisotropic effects then become important, 
and thus cannot be modeled by for instance the 
simple turbulent k-ε model considered in the 
present paper. 



 

 
 
2. Governing equations 
 

The morphology of the respiratory airways of 
the human lung is represented by a bifurcating 
system of pipes where each pipe belongs to a 
certain generation. The uppermost airway 
(generation0) is a single pipe called trachea. The 
upper airways have a certain wall structure called 
cartilaginous rings, located in the upper airways 
of the lung see figure 1. In this paper we only 
consider results for this single pipe, the trachea.  

For the analysis we assume a pipe with axial 
symmetry. The main flow is then in the x-
direction and r is the coordinate in the radial 
direction. Since the flow in trachea is turbulent 
with a typical Reynolds number ranging from 
2000 to 10000 we apply a low-Reynolds number 
incompressible k-ε model for the flow.  

 

 

 
Figure 1. Axisymmetric pipe geometry with a 
cartilaginous ring wall structure. Radius of Trachea 
a=0.008[m] length 0.096[m]. Amplitude of rings 
0.0008[m]. 
 
The equations for the fluid flow are then 
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with standard k-epsilon values for the constants 
and where fε and fµ are  the low-Reynolds 
number corrections.  

The convective-diffusion equation including 
effects from a concentration c of charged 

particles with charge q and the electrostatic 
potential φ is of the form 
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Here D is the Brownian diffusion coefficient 
given by 
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where Cu is the Cunningham factor which is a 
correction factor needed to bridge the gap 
between the continuum limit and the free 
molecular limit for the flow past a spherical 
particle. λ is the collision mean free path and d is 
the particle diameter, κ  is Boltzmann’s constant, 
T is the absolute temperature and µ  is the 
dynamic viscosity of the air. 
 The turbulent diffusion coefficient is related 
to the turbulent viscosity as 

 t
tD µ

ρ
=  

In the presentation of the results it is also 
convenient to introduce the dimensionless 
number α 
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The electrostatic potential is given by Poisson’s 
equation 
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which is the equation providing the connection 
between the charge distribution and the 
electrostatic potential. 
 
 
3. Use of COMSOL Multiphysics 
 
The set of equations (2.1-2.3) are solved together 
using Comsol Multiphysics 4.3. The different 
physics interfaces used are the low-Reynolds 
number k-ε model for turbulent flow, Transport 
of diluted species and Electrostatics.  



 

At the inlet x=0 a uniform velocity is chosen and 
at x=L fluid flow outlet conditions are applied. 
On the x-axis axial symmetry is chosen. 
For the transport of diluted species interface the 
concentration at the inlet is uniform 

0c c= . The boundary condition of the absorbing 
wall is 0c =  and at the outlet convective flux is 
chosen. For the electrostatics interface, zero 
charge is chosen at the inlet and outlet. Since the 
wall of the respiratory airways consists of a so 
called mucus-layer including mainly water, the 
wall is treated as a good conductor so the wall 
potential is chosen as zero. For the meshing 
settings a fine physics-controlled mesh is 
applied. 
 
4. Validation of Comsol model with 
theory for a smooth pipe 
 

To validate the results using Comsol 
Multiphysics we first consider some approximate 
analytical results of the deposition of charged 
particles in a fully-developed turbulent flow in a 
simple smooth pipe. 

We assume that the concentration is uniform 
equal to 0c  except in a thin layer close to the 
boundary. An approximate solution of Poisson’s 
equation is then simply 
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It is convenient to introduce dimensionless 
quantities. The dimensionless distance from the 
wall is introduced as 
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where the Reynolds number *Re  based upon the 
friction velocity is defined as 
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Here *u is the friction velocity given by  
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where wτ is the wall shear stress. 
For the fully developed case the convective-
diffusion equation (2.2) in the thin layer 
approximation then becomes 
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velocity. The solution is 
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The deposition velocity can be obtained by 
taking the limit y+ → ∞  
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It is seen that the deposition velocity is 
determined once a model for the eddy 
diffusivity tD+

 is known. The largest contribution 
to the integral in (4.4) however comes from the 
region near the wall and therefore it is sufficient 
to know its behavior for small y+ . The 
small y+ behavior of the eddy diffusivity is well 
known from experiments as 
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The integral in(4.4) then becomes 
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The result for the deposition velocity is then  
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In the limit of zero charge 0α → we find 
 

2/3 1/39
2 3

Vdep
D A

π

+
+ =

⋅

     (4.8) 

 

 
and hence in the limit of α → ∞ we find simply 
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Next the analytical results are to be compared 

with the result from Comsol Multiphysics.  
The calculation of the deposition velocity using 
Comsol Multiphysics is done as follows. The 
pipe is chosen sufficiently long so that the flow 
becomes fully developed. A length of about 80 
times the radius is sufficient. The convective 
particle flux .chds ncflux  is then integrated at two 
close x-positions, 1x and 2x ,in the fully developed 
region. The deposition velocity is then calculated 
from  
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For the comparison we chose a Reynolds-

number 2 / 4000meanRe U a ν= ⋅ =  and three 
different diameters of the particles, d=10nm, 
d=100nm and d=1000nm. To find the effect of 
the charged particles we vary the electrostatic 
parameter α 

2 2
0

0

1
4

c q a
T

α
ε κ

=  

As an example if the concentration of 
particles at inlet is 11 3

0 1 10 [1/ ]c m= ⋅ and the 
charge of the particles is 1940 1.6 10 [ ]q C−= ⋅ ⋅ the 
electrostatic parameter is 3460α = . 

In figure2 the deposition velocity calculated 
from the theory and Comsol Multiphysics are 
compared. 
  

 
 
Figure 2. A comparison of deposition velocity 
calculated from theory (solid line) and calculated by 
Comsol Multiphysics (o). d=10nm (black), d=100nm 
(red), d=1000nm (blue) 

 
From figure 2 we note that there is some 

disagreement between theory and simulation 
especially for large particles (d=1000nm). For 
smaller particles there is better agreement and for 
the particle size d=10nm there is quite good 
agreement for small α while for d=100nm the 
agreement is good for larger α. 

The reason for the failure using Comsol can 
be deduced from the behavior of the eddy 
diffusivity in the near-wall region. The correct 
behavior is given by (4.5). In figure3 we have a 
comparison of the behavior of the eddy 
diffusivity from theory and Comsol. We note 
that the correct power of 3 in theory is much 
larger than the corresponding power in Comsol 
which from the figure can be estimated to be 
about 0.6. Since the correct behavior of the eddy 
diffusivity in the near wall region is very 
important for the prediction of the correct 
deposition velocity this explains the difference 

  

 
Figure 3. Behavior of eddy viscosity in the near wall 
region from theory (green) and using Comsol (blue). 



 

between the results. The largest disagreement 
occurs for large particles, which can be 
understood by the magnitude of the Brownian 
diffusion D+ , which for large particles is very 
small. This together with the failure of the eddy 
diffusivity gives an error in deposition rate up to 
almost one order of magnitude. 

For smaller particles for which Brownian 
diffusion dominates the sensitivity of the error in 
the eddy diffusivity is however not as important 
and for particles with diameter 100nm the 
agreement is quite good, at least for large α. For 
particles with diameter 10nm the agreement is 
quite good for small to medium α  but not as 
good for large α. This disagreement for large α  
can be explained by the very thin boundary 
layers obtained in this limit, and may therefore 
be difficult to resolve numerically. 

As a conclusion we can say that Comsol 
Multiphysics provides with reliable results at 
least for small particles less than 100nm and can 
therefore be applied also to the more complex 
geometry. 

 
5. Particle deposition in trachea with a 
cartilaginous ring wall structure 

 
 Here we consider deposition results for the 

trachea as a pipe with a smooth wall and with the 
cartilaginous ring wall structure seen in figure 1. 
Since the most reliable results using Comsol for 
a smooth pipe are found for small particles we 
here only consider particles with diameter 10nm.  
The mean velocity is taken to be 4 [m/s] with a 
uniform distribution at inlet x=0. 

Deposition rates are calculated using 
integration of the normal convective flux 

.chds ncflux across the inlet and outlet as 
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The first case presented is for uncharged 
particles. In figure 4 the streamlines of the 
velocity field and the variation in concentration  
 

 
 
Figure 4. Flow in the neighborhood of the first ring. 
Streamline: Velocity field. Surface: Concentration. 
Lighter red means lower concentration.  
   

 
 
Figure 5. Streamline: Velocity field. Surface: Total 
particle flux magnitude. Dark red regions correspond 
to large flux and dark blue regions correspond to 
smaller flux. 
 
is presented in the region before and after the 
first ring. Note that the flow separates after the 
first ring and also in a small region before the 
first ring. In the separated regions the 
concentration is lower than in the main stream. 
This does not mean that the deposition rate or 
particle flux in the separated regions is larger. 
The local deposition rate is determined from the 
local normal concentration gradients at the 
boundary. This can be seen from figure 5 in 
which regions of dark red correspond to large 
particle flux and regions of dark blue to smaller 
particle flux. 

Next the effect of charged particles is 
considered. As an example we consider the case 
of a concentration at inlet of 11

0 1 10c = ⋅ part/m3, 
and that the charge of the particles is 40 times 
the elementary charge. This corresponds to a 
value of the electrostatic parameter α  of 3459. 

 
 



 

In figure 6 the corresponding flow in the 
region behind the first ring is presented. In the 
separated region the concentration is somewhat 
smaller than for the case with uncharged 
particles. The electric field is therefore smaller in 
these regions compared with the region close to 
the rings. The particle flux due to electric 
mobility is therefore smaller and deposition rates 
in fact become smaller in these areas when 
compared to a smooth pipe. In the region near 
the rings the electric field is larger than for the 
case of smooth pipe. Total deposition is then a 
delicate balance of these effects.  

In figure 7 the total deposition is presented, 
calculated using (5.1) for a smooth pipe and a 
pipe with a cartilaginous ring structure. For 
uncharged particles 0α = , the effect of the 
cartilaginous rings is to increase deposition while 
for larger values of α the situation is the 
opposite. Remarkably the effect of charged 
particles is the possibility to increase the amount 
of deposited particles from 1% for uncharged 
particles up to 25% for largeα . These results 
should be useful in an optimal design of 
therapeutic aerosols. 

 
6. Conclusions 
 

The deposition of charged submicron 
spherical particles in the trachea of the human 
airways is investigated. Especially the effect of a 
cartilaginous ring wall structure is considered. 

Since the fluid flow in trachea is in general 
turbulent a low-Reynolds number k-ε model is 
applied. The effect of Brownian and turbulent 
diffusion as well as migration of the charged   
particles in the self-consistent electric field is 
included. 
 

 
 

Figure 6. Streamline: Velocity field. Surface: 
Concentration. Arrow surface: Electric field  

 

 

 
 

Figure 7. Total deposition as defined by (5.1). (o) 
smooth pipe. (+) pipe with cartilaginous ring structure. 
  
 
The Comsol model is validated by comparing it 
with the theory for fully developed turbulent 
flow. The correct behavior of the eddy 
diffusivity in the near-wall region is shown to be 
crucial for a correct computation of the 
deposition. Deposition for three different 
diameters d=10nm, d=100nm and d=1000nm 
are considered. For the smaller particles 
d<100nm the agreement between theory is quite 
good. For the larger particles d=1000nm the 
agreement is poor. This failure of the Comsol 
model can be deduced from an incorrect 
behavior of eddy diffusivity in the near-wall 
region.  

 Since the Comsol model gives reliable 
results for small particles the model is used to 
estimate the deposition of 10nm particles in 
trachea with and without the cartilaginous ring 
wall structure. For uncharged particles the 
cartilaginous rings increase total deposition, 
while for a sufficiently large charge the effect is 
the opposite. In general charged particles 
enhance the total deposition with a possibility to 
increase particle deposition from 1% for 
uncharged particles up to 25% for charged 
particles. This result should be of importance in 
an optimal design of therapeutic aerosols. 
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