Use of COMSOL Multiphysics[®] to Simulate RF Heating of Passive Conductive Implants in MRI Scanners

> Alan Leewood, PhD MED Institute, Inc. West Lafayette, IN

COMSOL Users' Conference Boston, MA October 3, 2012

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan © 2012 MED Institute Inc.

MR Safety: Heating of Passive Implants

80,000,000 procedures/year

Zilver (Self-Expanding Vascular Stent)

Historical Project: RF Heating of a Zilver Stent

COOK

MEDICAL

500

Time (sec)

1000

1500

20 |

RF Heating Simulation: Purpose?

- Safety: Prevent excess cell death
- Determine worst case(s)
 - Many devices have multiple size(s)/length(s)
- Reduce Testing Burden
 - Historically required to test in both 1.5T & 3T scanners
 - Non-trivial device orientations & geometries

• Find Location of Maximum Heating

- Need to know where to locate thermocouples
 - Not all devices are "one dimensional" like
 - Vena Cava Filters
- Provide Understanding
- Virtual Bench Testing
 - Simulation in-lieu of testing?

MR Physics Fundamentals

RF Energy Added (Larmor Freq.)

Decay after RF Pulse

RF Heating: Passive Implant (Wire)

Name	Differential form	Insulation 1.8mm OD
Gauss's law	$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$	Wire $1 \text{mm} \phi$ \downarrow 6 mm \downarrow \downarrow 6 mm \downarrow \downarrow 15.2 mm
Gauss's law for magnetism	$\nabla \cdot \mathbf{B} = 0$	$E_s - Scattered$ $E_o - Incident$ 12.9 mm
Maxwell-Faraday equation (Faraday's law of induction)	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$	Medium – Gelled Saline 20.6 mm Bioheat Computation Region
Ampère's circuital law (with Maxwell's correction)	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$	

Time Varying Magnetic Field Induces Electric Field/Current

IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 10, OCTOBER 2005 4197 *MRI Safety: RF-Induced Heating Near StraightWires* S. M. Park1, *Student Member, IEEE*, R. Kamondetdacha1, A. Amjad1, and J. A. Nyenhuis1, *Senior Member, IEEE* Purdue University, West Lafayette, IN 47907-2035 USA

Coupled Heat Transfer

Pennes Bioheat Equation

COMSOL Multiphysics[©]

RF Module:	Electromagnetic Open Field Solution
Heat Transfer Module:	Transient Temperature Solution (Bioheat)
COMSOL Multiphysics:	Vascular Cooling (Laminar Flow)
CAD Import:	Direct CAD Geometry Import

Leveraging Independent Experts

Identify, implement and validate the appropriate physics in COMSOL.

Expertise in the understanding and use of MR scanners

Provide RF Coil specifications

Low Bypass RF Coil (Coil is *tuned* to 64Mhz for 1.5T Scanner)

RF Heating of a Straight Wire

Wire Resonates in Magnetic Field: Drives Transient Thermal Problem

 $\ensuremath{\mathbb{C}}$ 2012 MED Institute Inc.

Validation (1.5T – 64 MHz)

IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 10, OCTOBER 2005 4197 *MRI Safety: RF-Induced Heating Near StraightWires* S. M. Park1, *Student Member, IEEE*, R. Kamondetdacha1, A. Amjad1, and J. A. Nyenhuis1, *Senior Member, IEEE* Purdue University, West Lafayette, IN 47907-2035 USA

OSU Medical School: Experimental Validation 1.5T & 3T Siemens Scanners

Electric Field Norm [3.0T]: ASTM Phantom

ASTM F2182 Rectangular Gel Phantom

Ti Rod (Dia=1/8" L=10cm) Calibration/Validation

© 2012 MED Institute Inc.

COOK®

MEDICAL

Validation (80mm Zilver Stent)

3T Scanner (RF Coil Powered Equivalent ; Calibration Rod) [no perfusion or arterial blood flow]

MEDICAL

Vena Cava Filters

Tulip

Celect

Filters imported into Model of ASTM Phantom 3T Scanner (128 MHz RF Coil)

Temp @ 15 Minutes Heating 3T Scanner (no venous blood flow or perfusion)

MEDICAL

Direct Validation: Tulip Filter

Conclusions

- <u>Accurately</u> Simulate Device/Tissue Temperature due to RF heating with COMSOL Multiphysics[®]
 - Safety: Prevent excess cell death
 - Determine worst case(s)
 - Many devices have multiple size(s)/length(s)
 - Reduce Testing Burden
 - Historically required to test in both 1.5T & 3T scanners
 - Non-trivial device orientations & geometries

Find Location of Maximum Heating

- Need to know where to locate thermocouples
 - Not all devices are "one dimensional" like
 - » Vena Cava Filters
- Provide Understanding
- Virtual Bench Testing
 - Simulation in-lieu of testing!

Continuing Developments

• Further Validation @ OSU

- 3D E-field accuracy
- Thermocouple positional sensitivity
- Upgraded RF Coil Specifications
 - Confidential relationship with Siemens
- New Generation 70cm Diameter RF Coils
 - Current generation are 60cm
- Higher Field Scanners (> 3T)
 - Fields tend to be more localized
- Multi-channel RF Coils
 - Birdcage coils have limited homogeneity
- Stent Geometry Idealizations
 - 3D not yet practical for many applications
- Generalized Blood Perfusion
 - Capillary Cooling effect
- Vascular/Arterial Flow
 - Coupled CFD
- Static Magnetic Force Acting on Implants
 - B₀ field not RF Coil
- Virtual "Digitized" Human Anatomies
 - This is where the FDA and industry is moving

