Vibration and Acoustic Analysis of Trussed Railroad Bridge under Moving Loads

R. Daniel Costley

Henry Diaz-Alvarez

Mihan H. McKenna

Structural Engineering Branch

Geotechnical and Structures Laboratory

US Army Engineer Research & Development Center

COMSOL 2012

Boston, MA 3-5 October 2012

US Army Corps of Engineers BUILDING STRONG.

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Outline & Introduction

- Motivation
 - Denied Area Monitoring
 - Structural Health Monitoring
 - Battle damage assessment
- Structural Finite Element Model
 - Railroad bridge at Ft. Leonard Wood, MO
 - Transient response of structure due to vehicle loading
 - Brief description of implementation of moving load representation
 - Predict response due to different loadings
 - Axle speed
 - Axle weight
 - Single axle vs. Multiple axles (locomotive)
 - Model does not include effects of vehicle suspension
- Acoustic Finite Element Model
 - Include topography with ground impedance
 - Outputs of structural model used as inputs to acoustic model
 - Predict SPL (single axle)
 - Different frequency components
 - Different loading conditions
- Summary & Conclusions

Motivation

STRUCTURAL HEALTH MONITORING

- Battle Damage Assessment
- Remote assessment of structures for route reconnaissance
 - To complement satellite imagery
 - Scour usually not visible
- Significant changes in frequency response could indicate bridge instability

REMOTE TRAFFIC MONITORING

- Determine changes in traffic patterns
- Number and weight of vehicles
- Speed of travel

Structural Model

Anatomy of Ft. Leonard Wood Bridge

Truss bridge model

- 7 panel bridge
- 25° skew angle at ends of bridge
- Pinned at each end
- 3D Euler Beam elements
 - Material properties: E, ρ, v
 - Cross section properties: A, $I_{_{\rm YY}},~I_{_{\rm ZZ}}$

Model with cross-ties & rails

- Transmits load to structure
- Connections between crossties & stringers
 - Pinned allows for more movement
 - Clamped stiffer

Traveling Load: Single Axle

- Single axle model
 - 2 wheels traveling across bridge at constant speed
 - Makes interpretation easier
- Locomotive model
 - Superposition of 4 single axle models with delays representing wheel spacings
- Traveling load distribution function represents concentrated load from each wheel
 - Verified formulation by calculating moving force on Euler Beams

Power Spectra: Point 737 Effects of axle speed & number of axles ≈8.5 Hz 4.5 m/s 7 m/s 10⁻⁶ v-comp v-comp 10⁻⁶ z-comp z-comp Single Axle Single Axle 10⁻⁸ 10⁻⁸ , MAGNITUDE MAGNITUDE Vertical 10 10 10⁻¹² -12 10 10⁻¹⁴ 10⁻¹⁴1 Lateral 20 80 100 140 20 80 120 140 0 40 60 120 0 40 60 100 FREQUENCY (Hz) FREQUENCY (Hz) 9 m/s 4.5 m/s v-comp v-comp 10⁻⁶ 10⁻⁶ z-comp z-comp Single Axle Locomotive 10⁻⁸ · 10⁻⁸ MAGNITUDE 10⁻¹⁰ -10 10

10⁻¹²

10⁻¹⁴

0

20

40

80

FREQUENCY (Hz)

60

100

120

Effects of Adding Axles

Spectrograms from <u>Particle Velocity</u> near Center of Bridge

Single Axle

Locomotive with 4 Axles

- Differences:
 - broad-band response when axles cross Floor Beams
 - Engine takes a few seconds longer to completely leave bridge
- Similarities:
 - 2 and 8 Hz vibration as axle enters and exits bridge
 - 18, 36, 54, 72 Hz bands as axle crosses bridge

BUILDING STRONG®

Acoustic Model of Bridge

- Structural model
 - 3-D Euler Beam elements
 - Mechanical properties: ρ , A, E, I_{XX} & I_{VV}
 - No surface area to interact with surrounding fluid

- Acoustic model of bridge
 - Solid deck one piece
 - Ribs under deck to represent stringers
 - Truss: extruded rectangular crosssections
 - Bridge is 'empty' volume
 - Particle acceleration specified • on boundaries

Complete Acoustic Model

- Three components
 - Acoustic model of bridge
 - Ground surface
 - From survey
 - Impedance of firm natural soil
 - Air atmosphere
 - Constant sound speed
 - Radiation BC

Filtered Accelerations from Structural Model

- Example: Vertical vibration of individual stringer
 - <u>Locomotive</u> traveling at 4.5 m/s (10 mph)
- Collect particle accelerations from points along stringer
- Bandpass filter: 7 10 Hz, Center frequency = 8.5 Hz
- Determine envelope from filtered signal

Acceleration Profiles

- Acceleration Profiles assembled for
 - vertical motion of bridge deck
 - horizontal motion of bridge deck
 - both components of truss motion
- The profiles are used as boundary conditions for acoustic bridge model
- Linear interpolation between points

<u>SPL Contours, Locomotive</u> 4.5 m/s; 8.5 Hz; 1-1.5 sec

Locomotive: Radiated Sound Power SPL at Point 90 m directly above bridge deck

<u>SPL Contours, Locomotive</u> 4.5 m/s; 18 Hz; 6-6.5 sec

Summary & Conclusions

- Description of model
 - Euler Beam elements
 - Boundary Conditions
 - Representation of moving point load
- Structural model to determine motion of bridge deck & truss
 - Transient model
 - Single axle: simpler case for interpretation
 - Locomotive: more wheels crossing floor beams
 - Identified frequencies most likely to radiate detectable signals
- Acoustic response
 - Radiation pattern changes with frequency
 - Radiated power increases with:
 - axle weight
 - axle speed
 - number of axles
 - Vertical vibration of bridge deck largest contributor to radiated sound
 - Largest accelerations, more surface area
 - Model does not consider porous nature of deck
 - Truss super-structure is smallest contributor
- Future efforts would include effects of vehicle suspension

FE Comparisons with Accelerometer Data

Average Vertical Motion of Bridge Deck

- Average displacement and acceleration represents bulk motion
 - Points that vibrate in-phase will add constructively
 - Function of frequency
- Bridge deck larger surface area
 - Acoustic radiation

10 mph = 4.5 m/s

Frequency Spectra as Axle Crosses Bridge

10

- Enter
 - Peaks at 2, 8, 18 Hz
- Middle
 - Peaks at 2 and 18 Hz
- Leaving Natural frequencies
 - Peaks at 2 and 8, smaller peak at 5 Hz
 - Lost peak at 18 Hz
 - Peaks at 13 & 15 add destructively
- Large average responses indicate stringer is vibrating in phase at that frequency

10 mph = 4.5 m/s

Effects of Changing Speed (single axle)

Sprectrograms from <u>Particle Velocity</u> near Center of Bridge

- Some frequencies bands change with speed:
 - 4.5 m/s: 18, 36, 54, 72 Hz
 - 7 m/s: 27, 54 Hz
 - 9 m/s: 36, 72 Hz
- Similarities:
 - 2 and 8 Hz vibration as axle enters and exits bridge

Case Studies

Radiated Power vs. speed and number of axles

Speed	Frequency	SPL	Power	Interval		
(m/s)	(Hz)	(dB)	(mW)	(sec)		
Single Axle						
4.5	2	21.7	7.4e-3	11-12		
7	2	24.3	1.3e-2	7-8		
9	2	23.9	1.2e-2	5.5-6.5		
4.5	8.5	52.8	3.0	0.4-0.9		
7	8.5	53.0	3.3	0.3-0.8		
9	8.5	53.8	3.7	0.2-0.7		
4.5	18	22.6	9.2e-2	6-6.5		
Locomotive						
4.5	2	28.1	3.2e-2	13-14		
4.5	8.5	55.1	5.2	1-1.5		
4.5	18	32.8	0.620	6-6.5		

Case Studies

Radiated Power vs. axle weight

Axle	Frequency	SPL	Power	Window
Weight	(Hz)	(dB)	(mW)	(sec)
(kips)				
20	2	11.5	6.96e-4	11-12
40	2	17.5	2.78e-3	11-12
65	2	21.7	7.4e-3	11-12
20	8.5	42.5	0.283	0.4-0.9
40	8.5	48.5	1.13	0.4-0.9
65	8.5	52.8	2.98	0.4-0.9
20	18	12.5	8.72e-3	6-6.5
40	18	18.5	3.49e-2	6-6.5
65	18	22.7	9.21e-2	6-6.5

<u>SPL Contours, Locomotive</u> 4.5 m/s; 2 Hz; 13-14 sec

