

Multiphase Transport with Large Deformations Undergoing Rubbery-Glassy Phase Transition: Applications to Drying

Tushar Gulati and Ashim K. Datta

Dept. of Biological and Environmental Engineering

Cornell University, Ithaca, NY

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Overview

- Drying of biomaterials involves mass, momentum and energy transport along with large shrinkage of the porous material
- Material exists in different states (Rubbery/Glassy) during drying affecting product quality critically
- Complex Shrinkage pattern is observed leading to Case-Hardening
- Case-Hardening affects key Quality Attributes of the dried product such as Porosity and Bulk Density

What is Case-Hardening?

 Thin and significantly dried layer (crust/shell) on the outside of the material

 A glassy matrix characterized by different Mechanical and Transport properties compared to the core

 As a result, the material shrinkage deviates from the amount of water lost

Objectives

- To develop a fundamentals-based multiphase porous media model coupled with large deformations undergoing Rubbery-Glassy phase transition to simulate drying processes
- To predict the complex shrinkage patterns, case hardening effects and deviations in volumetric shrinkage observed during drying
- To predict key Quality Attributes such as degree of crust formation, gas porosity and bulk density

Hot air convective drying

- Convective drying carried out at three different temperatures (40°C, 70°C, I50°C)
- Assumptions:
 - The different phases are in continuum
 - Thermal Equilibrium
 - Pressure shared by all phases

Prediction of Key Quality Attributes

Modeling Framework

Transport Model

Mass Conservation

Phase change

$$\frac{\partial c_{w}}{\partial t} + \left(\mathbf{v_{w}} - \mathbf{v_{s}}\right) \cdot \nabla c_{w} + c_{w} \nabla \cdot \mathbf{v_{w}} = \nabla \cdot \left(D_{w} \nabla c_{w}\right) - \dot{I}$$
Solid Velocity

Diffusion

Convection

Gas:
$$\frac{\partial c_g}{\partial t} + (\mathbf{v_g} - \mathbf{v_s}) \cdot \nabla c_g + c_g \nabla \cdot \mathbf{v_g} = \dot{I}$$

Vapor:
$$\frac{\partial c_{v}}{\partial t} + \left(\mathbf{v_{g}} - \mathbf{v_{s}}\right) \cdot \nabla c_{g} + c_{g} \nabla \cdot \mathbf{v_{g}} = \nabla \cdot \left(\varphi S_{g} \frac{C^{2}}{\rho_{g}} M_{a} M_{v} D_{eff,g} \nabla x_{v}\right) + \dot{I}$$

Binary Diffusion (vapor and air)

Transport Model

Energy Conservation

Convection

$$\frac{\partial}{\partial t} \left[\sum_{i=s,w,v,a} \left(c_i c_{p,i} T \right) \right] + \sum_{i=w,v,a} \left(\mathbf{v_i} - \mathbf{v_s} \right) \cdot \nabla \left(c_i c_{p,i} T \right) + \sum_{i=w,v,a} \left(c_i c_{p,i} T \nabla \cdot \mathbf{v_i} \right) - c_{p,w} T \nabla \cdot \left(D_c \nabla c_w \right) \\ = \nabla \left(k_{eff} \nabla T \right) - \lambda \dot{I}$$
Conduction

Momentum Conservation

$$\mathbf{v}_{i} - \mathbf{v}_{s} = -\frac{k_{i} k_{r,i}}{S_{i} \phi_{i} \mu_{i}} \nabla P$$

Solid Mechanical Model

Stress-Strain curves for potatoes at different moisture contents (Krokida et al., 2000)

Linear Momentum Balance

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}' - p_f \mathbf{I}$$
$$-\nabla \cdot \boldsymbol{\sigma} = 0$$

Non-Hookean Material

$$W_{S} = \frac{1}{2} \mu \left(I_{1} - 3\right) - \mu \ln\left(J_{el}\right) + \frac{1}{2} \lambda \left[\ln\left(J_{el}\right)\right]^{2}$$

Large Deformations

$$\mathbf{E}_{\mathbf{el}} = \frac{1}{2} \left[(\nabla .\mathbf{u})^T + \nabla .\mathbf{u} + (\nabla .\mathbf{u})^T \nabla .\mathbf{u} \right]$$
Solid

displacement

Quality Attributes

Mechanistic approach to predicting Quality Attributes

Bulk Density

$$\rho_b = \rho_s \left(1 - \phi_g \right) \left[\left(\frac{1 + X}{1 + (\rho_s / \rho_w) X} \right) \right]$$

Crust Formation

$$\Delta T_g = T - T_g$$

Gas Porosity

$$\phi_{g} = S_{g} \left(1 - \frac{1 - \phi_{0}}{J} \right)$$

Shrinkage

$$J = \frac{V}{V_0}$$

Transport and Mechanical Properties

Transport and Mechanical Properties

 Transport and Mechanical Properties are functions of Moisture Content

	Rubbery	Glassy
Mechanical	•	•
 Elastic Modulus 	10 ⁵ Pa	10 ⁷ Pa
 Poisson's Ratio 	0.5	0.33
Transport		
 Liquid Diffusivity 	10 ⁻⁹ m ² /s	-
 Vapor Diffusivity 	_	$10^{-11} \text{m}^2/\text{s}$

COMSOL Implementation

Cylindrical
Shaped Potato
Samples

- Forced Convection Heat Transfer
- Moisture Loss through Evaporation
- Free Surfaces for Deformation

2D Axisymmetric

- No axial displacement
- Insulated for Energy and Moisture transfer

COMSOL Implementation

Heat and Mass Transport

COMSOL Multiphysics:

- Transport of Dilute Species
- Transport of Concentrated Species (Maxwell-Stefan)

ALE frame for

Mesh Movement

- Heat Transfer in Fluids
- Darcy Flow

Primary Variables: temperature, concentration, pressure, velocity

Solid Mechanics

Large deformations:

- Hyperelastic material (Neo-Hookean Model)
- Geometric non-linearity

Primary Variables: Stresses (2nd PK), Strains (Cauchy-Green)

Results: Model Validation

• The drying model was validated for moisture, height and diameter histories (Yang & Sakai, 2001)

Simulated shrinkage vs. time (T=70°C)

Degree of Crust Formation (ΔT_g)

- $\Delta T_a > 0$ indicates material is in Rubbery State
- ΔT_α < 0 indicates material is in Glassy State

Low Temperature (70°C)

High Temperature (150°C)

Deviations in Volumetric Shrinkage

 High drying rates results in Case-Hardening leading to large deviations in volumetric shrinkage

Experimental Volume Ratio at different Temperatures (Wang and Brennan, 1993)

Gas Porosity

 High drying rates results lead to increased Pore formation and in some cases, tissue rupture

Bulk Density

 Low drying rates lead to uniform shrinkage, material reduces to a solid core resulting in a denser product

Summary and Conclusions

- A mechanistic approach to understanding drying of biomaterials taking into account the different states of the material is proposed
- The model predicts Case Hardening and key Quality Attributes with very little empirical information
- Such models could serve as frameworks for quality prediction for many products and processes beyond simple drying that involve a complex interplay of heat and mass transport and large deformation (shrinkage/swelling)

Questions?

Thank You