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Objectives

Address title problem so as to...

1. Formulate boundary conditions applicable in
an unbounded region;

2. Specify conditions suitable to ensure a
unique solution in a doubly connected re-
gion; and

3. Allow the interior boundary to have a sharp
edge, such as a cusp;

4. Compare the COMSOL results with an ex-
act solution.
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Figure 1. Bounded neighborhood of a disk

containing the point z = a > 0 in the plane

of the complex position coordinate, z := x + iy.

The center, z0, is at (�0.1a, 0.05a)
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Figure 2. Bounded neighborhood of a airfoil

containing the point Z = 2a > 0 in the plane

of the complex position coordinate, Z := X + iY .

Here Z = z + a2/z, or z2 � 2Zz + a2 = 0.
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Figure 3. Image of the whole exterior of the

airfoil in the plane of ⇣ = ⇠ + i⌘. Here Z = ⇣ + a2/⇣,
or ⇣2 � 2Z⇣ + a2 = 0. The inner circle here

corresponds to the outer edge in Fig. 2



Representation of the physics

Let (u, v) be the cartesian components of fluid
velocity. I assume:

1. ux + vy = 0 (The fluid is incompressible);
2. vx � uy = 0 (The motion is irrotational).

Note that the foregoing are the real and imagi-
nary parts of the complex equation
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(i.e. the Cauchy-Riemann equations)



The complex potential, w = �+ i 

Let (x, y) 7! � and (x, y) 7!  be twice di↵eren-
tiable. Then the representations

(u, v) = (�x,�y) , (u, v) = ( y,� x)
satisfy vx � uy = 0 and ux + vy = 0, respectively,
and � and  are called the velocity potential and
stream function. Again, the foregoing are the
real and imaginary parts of the complex equation
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Invariance conditions and
impermeable-wall condition

At corresponding points in the ⇣- and z-planes, I
impose the condition:

u(⇣) � iv(⇣) = u(z) � iv(z),
while at corresponding points in the z- and Z-
planes, I impose the condition:

w(Z) = w(z).
Note that u •r = 0 by construction, so

contours of constant  = =(w) are parallel to u
and therefore tangent to the airfoil surface.



The free-stream condition

I impose the condition

lim
⇣!0

{u(⇣) � iv(⇣)} = Ue�i↵ ,

in which U > 0 and ↵ denote the fluid speed in
the remote free stream and the angle of attack,
respectively.



The Kutta condition (1902)

Owing to the double connectedness of the re-
gion occupied by fluid in the Z- and z-planes the
problem posed thus far is insu�cient to deter-
mine the solution uniquely. One fixes the solu-
tion only by fixing its circulation, � :=

H
C u • dx,

in which C is a loop that embraces the inner
boundary once. One may fix � by imposing the
condition that u(Z)�iv(Z) be finite at the trailing
edge, Z = 2a, or, equivalently, that u(⇣) � iv(⇣)

be zero at the ⇣ = a.
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Figure 4. Distribution of |(u(⇣) � iv(⇣))/U |
in the ⇣-plane for ↵ = 5�



0.5 1.0 1.5

Figure 5. Distribution of |(u(Z) � iv(Z))/U |
in the Z-plane for ↵ = 5�



Figure 6. Distribution of |(u(Z) � iv(Z))/U | over

the airfoil surface versus X/a for ↵ = 5�



Conclusions

1. COMSOL’s Weak Form PDE physics in-
terface enables convenient solution of the
Cauchy-Riemann equations for the veloc-
ity field ⇠ + i⌘ 7! u(⇣) � iv(⇣) and the PDEs
for the stream function for a given velocity
field;

2. COMSOL’s General Extrusion model cou-
pling operators enable convenient replotting
of data under changes of independent vari-
ables defined by conformal transformations.




