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Abstract

Developers of numerical models who address the title problem (Figure 1) face several hurdles, such
as: (1) the need to formulate boundary conditions applicable in an unbounded region; (2) The need
to specify conditions suitable to ensure a unique solution in a doubly connected region; and (3) The
need to allow the interior boundary to have a sharp edge, such as a cusp. The aim of the work
reported herein is to build a COMSOL model tree that addresses these challenges with as few
additional complications as possible and to compare the numerical results with the corresponding
results of an analytical solution, specifically one associated with the names of Kutta and Zhukovski,
as described, for example, in Chapter 10 of the book by Lighthill,1986. Idealizations suited to this
aim are: (1) Restriction to two-dimensions; (2) Exclusion of time dependencies; and (3) Exclusion
of the effects of boundary-layers and wakes associated with enforcement of the no-slip boundary
condition of a viscous fluid. The present work employs equation-based modeling in COMSOL
Multiphysics. COMSOL's Weak Form PDE physics interface proves to be convenient and adequate
for the present purpose. From the stated assumptions one may show that the cartesian velocity
components (u,v) each satisfy Laplace's equation (cf. Section 33 of Lamb 1932). In the analytical
theory of Zhukovski airfoils one employs a change of complex position coordinate (the Zhukovski
transformation) that maps points in the unbounded exterior of a circle to points in the unbounded
exterior of an airfoil. If one applies this transformation in the opposite direction one obtains two
roots of a quadratic equation, one of which takes points in the unbounded exterior of the airfoil to
points in the unbounded exterior of the circle and the other of which takes points in the unbounded
exterior of the airfoil to points in a bounded region interior to a smaller circle. The present work
employs the latter root to map the whole exterior of the airfoil maps to a bounded region suitable for
meshing. By appeal to a theorem of complex variables one may show that the velocity components
(u,v) satisfy Laplace's equation with respect to both the old and the new independent variables. The
root model described herein solves the weak-form equations simultaneously in two adjoining sub-
regions of the transformed geometry. Model-coupling operators of Identity Mapping type prove
convenient as a means of exchanging data at the interface between these sub-regions. A third
geometry, needed for plotting, represents the bounded neighborhood of the airfoil in the original
variables. The results include those in Figure 1 as well as plots of the non-dimensional slip velocity,
q/U, (Figure 2) over the upper and lower surfaces both from the COMSOL model and from the
corresponding analytical solution. COMSOL Multiphysics does not support infinite elements in all
of its modules. The model tree employed herein will be of use to intermediate-level users who
encounter the need to build one.
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Figure 1: Distribution of the ratio of fluid speed, g, to free-stream speed, U, and the corresponding
streamlines in the flow past a cambered Zhukovski airfoil at five degrees angle of attack.
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Figure 2: Distribution of the boundary value of q/U over the upper and lower surfaces at five
degrees angle of attack.



