

Modelling of thermal load and electric fields in microfocus X-ray tubes

Dr. Vladimir Burlaka, Thorsten Fröba

X-RAY WorX GmbH

Innovative Microfocus X-ray Tubes - Made in Germany

Outlook

- X-RAY WorX
- Fields of business
- Microfocus X-Ray technology
- Comsol application by X-Ray WorX:
 - Optimization of thermal load on HV-Insulators (ht & sm)
 - Optimization of thermal load on the target (ht & sm)
 - Optimization of aperture diameter and filament position incl. particle tracing (es & pt)
 - Optimization of the geometry of the cathode chamber and cathode assembly (es)
- Summary

X-RAY WorX

We are one of the leading global suppliers of high resolution microfocus tubes for nondestructive testing, computed tomography, and metrology in industry and science.

- In cooperation with our partners, we offer worldwide sales and services for microfocus X-ray solutions.
- It is our goal to continuously improve and enhance microfocus technology in terms of resolution, focal spot stability, power, and ease of use.

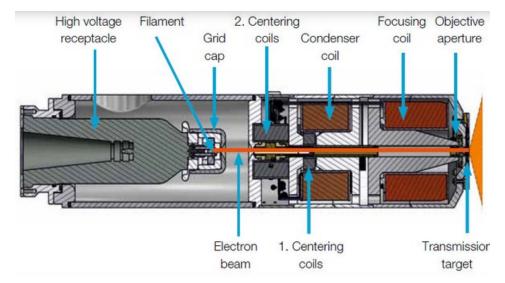
Since January 2021 X-RAY WorX is part of the Swedish Indutrade group

www.x-ray-worx.com

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V.

Fields of business

Development and production of microfocus X-ray tubes



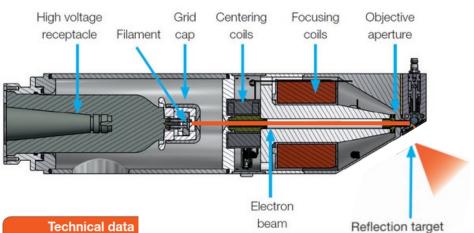
We are continuously working on improvement of availability, reduction of focal spot movement, efficient cooling systems, higher filament lifetime, improvement of resolution and stability, automation, and maintainability.

Microfocus X-Ray technology

Microfocus transmission tubes – double stage

THE Plus	TCHE Plus	TCNF Plus
Up to 300kV	Up to 240kV	Up to 240kV
2μm – 15μm JIMA	0.9μm – 15μm JIMA	0.5μm – 15μm JIMA
External cooling	External cooling	Internal cooling
Diamond target	Diamond target	Diamond target
Target cooling	Target cooling	Target cooling
50W target power	50W target power	50W target power

Microfocus X-ray tube XWT-160-TCNF Plus


XWT-190-TCNF Plus with 50 W target power

JIMA resolution 0.5 µm

Microfocus X-Ray technology

Microfocus reflection tubes

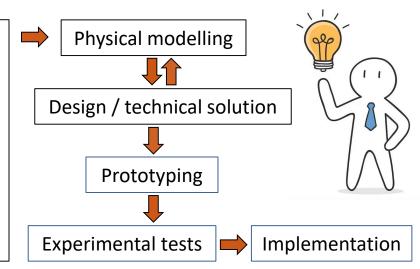
Technical da	beam				
Data	Product line CT Plus				
Max. voltage (kV)	225	240	300		
Min. voltage (kV)	20	20	50		
Max. current (mA)	3.0	3.0	3.0		
Min. current (mA)	0.05	0.05	0.05		
Max. power, emission (Watt)	500	500	500		
Max. power, target (Watt)	450	450	450		
JIMA resolution (µm)	4.0	4.0	4.0		
Tube type		Reflection			
Target type		High Power			
Target material		Tungsten			

Microfocus X-ray tube XWT-300-CT Plus

XWT-300-CT Plus with new cooling circuit

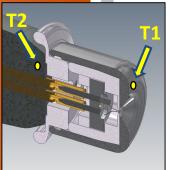
JIMA resolution 4.0 µm: 225kV - 300kV tubes

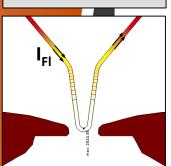
Comsol application bei X-Ray WorX

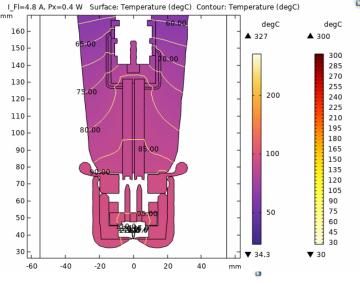


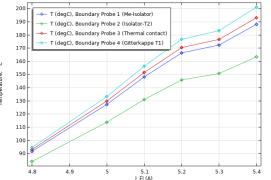
Our technical challenges

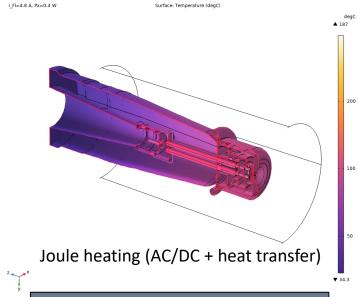
- More X-ray power: thermal load on the target (anode)
- Dielectric strength (proper materials, geometry, polishing, vacuum conditions)
- Filament lifetime: geometry, temperature, filament current, vacuum conditions
- Smaller focal spot: electron optics and thermal load on the target surface
- Smaller & lighter modules
- Long-term thermal stability (cooling and e-optics performance)

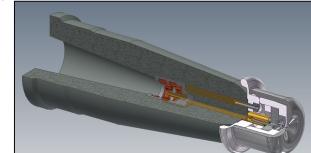

Comsol Multiphysics

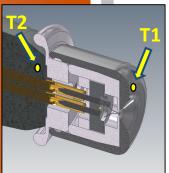

- Heat transfer
- AC/DC
- Particle tracing module
- Material library
- LiveLink™ for Inventor®
- Design module
- Structural Mechanics (optionally)

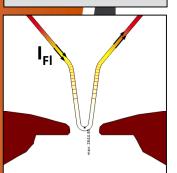



Optimization of the thermal load on HV-Insulators

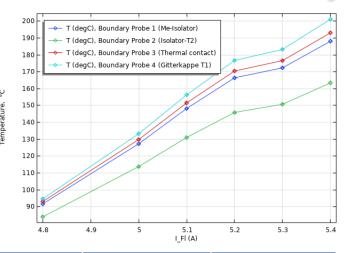






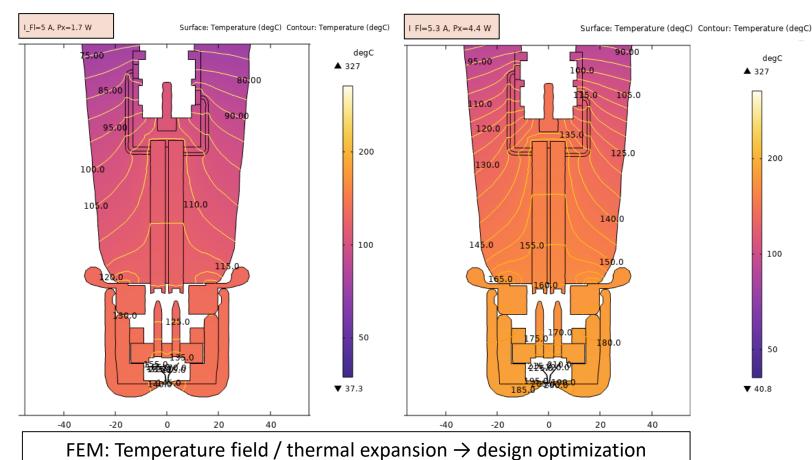


Heat transfer: experiment and modelling



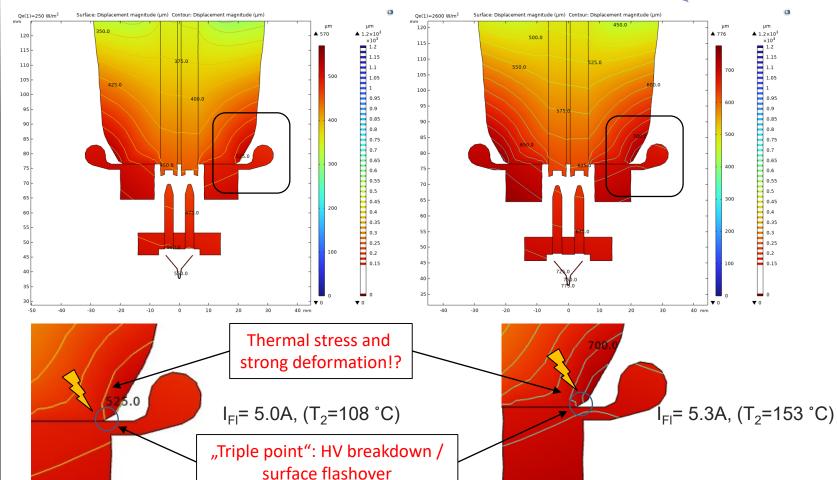
Experimental data

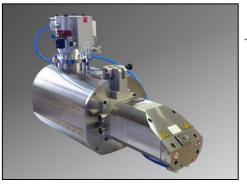
I_Fl (A)	T1 (Gitterkappe)	T2 (Isolator)		
0	28,7	28,8		
4,8	4,8 94,4 78,6			
5,0	132,3	108		
5,1	156	127,8		
5,2	176,3	143		
5,3	183,6	152,8		
5,4	201,4	166,1		

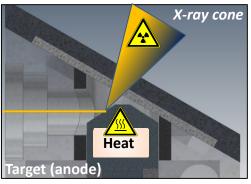


Simulation data (Boundary Probes)

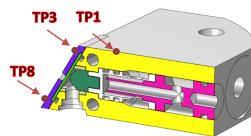
I_FI (A)	Px (W)	T (degC) T1 (Gitterkappe)	T (degC) (Thermal contact)	T (degC) (Me-Isol)	T (degC) T2 (Isolator)
4.8	0.4	94.613	93.046	91.631	83.934
5.0	1.7	133.24	129.84	127.29	113.79
5.1	2.9	156.36	151.53	148.22	131.02
5.2	4.1	176.73	170.48	166.44	145.91
5.3	4.4	183.31	176.65	172.36	150.75
5.4	5.6	201.19	193.14	188.15	163.47

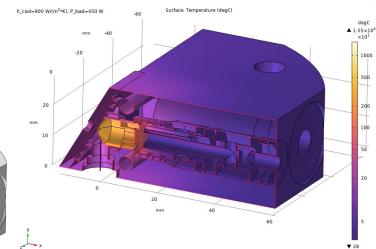

Modelling results (heat transfer)


Modelling results (thermal expansion)

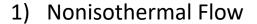


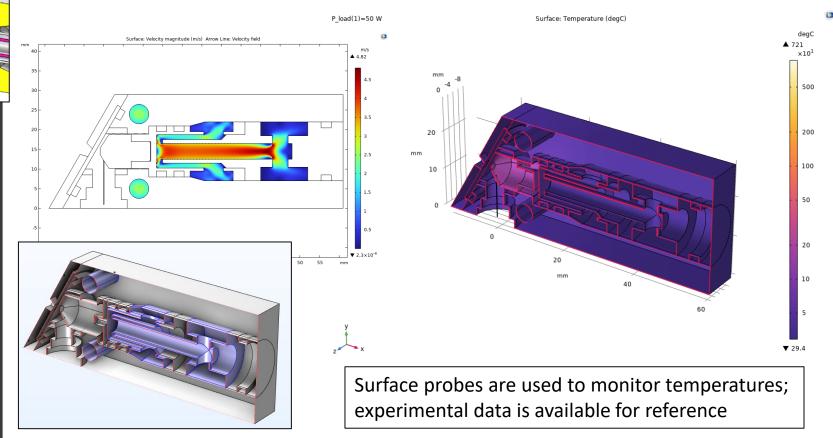
Optimization of thermal load on the target



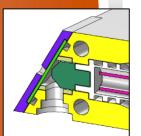

		Voltage [kV]						
		60	100	150	190	225	240	300
	50	60	60	60	55	40	40	40
	100	110	105	100	85	80	75	75
power [W]	150	140	175	145	125	125	125	125
	200		250	190	170	170	170	170
ρο	250		340	235	235	225	225	225
Target	300			300	300	285	285	285
Tar	350			370	370	340	340	340
	400			450	450	400	400	400
	450				500	450	450	400

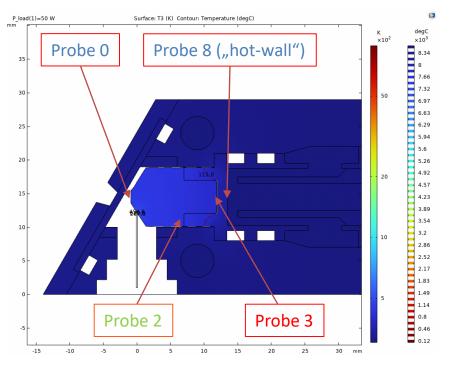
Topics:

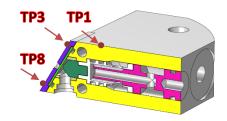

- Heat distribution within the Target (anode)
- Thermal expansion within the target-assembly
- Heat distribution within the tube housing
- Extreme temperatures at the target surface
- Active cooling

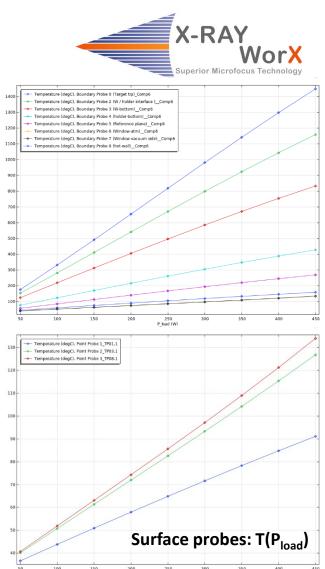


Our approach: nonisothermalflow and heat transfer (One-way coupling approach)



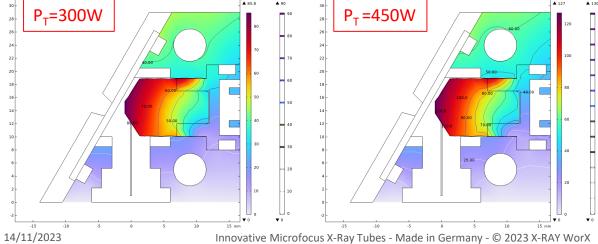



2) Heat Transfer

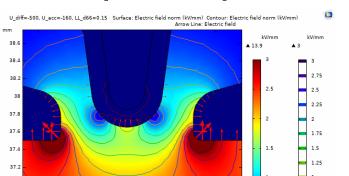


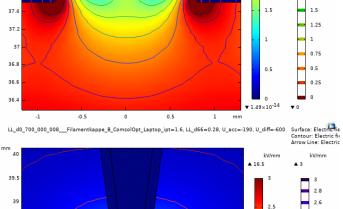
Modelling results (heat transfer)

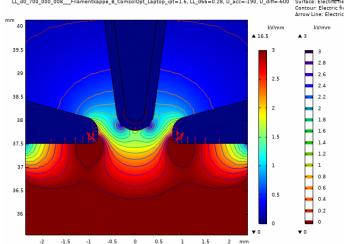
P_load (W)

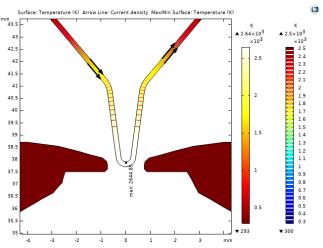

Modelling results (heat transfer and thermal expansion) P_load=450 W, T_inflow=302.55 K Contour: Temperature (degC) Surface: Temperature (degC) 1.43 1.23 525.0 925.0 0.53 0.23 Surface: Displacement magnitude (um) Contour: Displacement magnitude (um) Surface: Displacement magnitude (µm) Contour: Displacement magnitude (µm) ▲ 85.8 $P_{T} = 300W$ $P_{\tau} = 450 W$

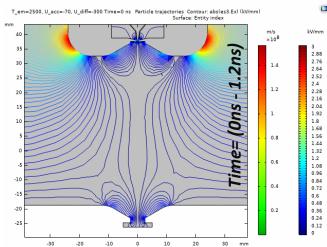
▲ 1.43×10³

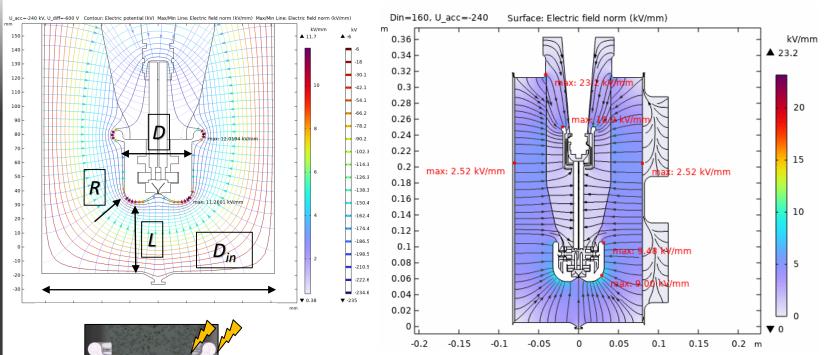

1.23


Target assembly: design optimization




Optimization of aperture diameter and

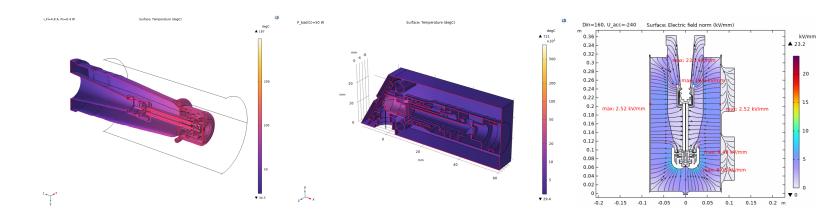




14/11/2023

Optimization of the geometry of the cathode chamber and cathode assembly

Minimization of local electrical field (electrostatic, dielectric strength)


"Triple point": very strong enhancement of the electric field may take place due to the thermal expansion

Summary

Comsol application by X-Ray WorX incl.:

- Optimization of the thermal load on HV-Insulators and the target
- Optimization of aperture diameter and filament position, filament current and particle tracing
- Optimization of the geometry of the cathode chamber and cathode assembly

Thank you

Contact

X-RAY WorX GmbH Siemensstraße 26 D-30827 Garbsen Germany

info@x-ray-worx.com
www.x-ray-worx.com
+49 5131 48712-60

Abstract

Modelling Of Thermal Load And Electric Fields In Microfocus X-ray Tubes

Dr. Vladimir Burlaka¹, Thorsten Fröba¹

¹X-RAY WorX GmbH, Siemensstraße 26, 30827 Garbsen, Germany

Abstract

The thermal load on the system components is one of the technical problems in the development of microfocus X-ray tubes. To improve their stability in long-term use, it is important to understand the physical phenomena and their influence on the system stability and filament lifetime.

To improve our X-Ray WorX products, we apply Comsol Multiphysics software to optimize the thermal load on the insulators as well as the target used to generate the X-rays. Joule heating mechanism, used to facilitate thermionic emission from the filament, generate a lot of heat that must be dissipated by the cathode assembly and insulator. The insulators in particular can cause problems from a dielectric and mechanical point of view, since they experience relatively high temperatures and thermal expansion under thermal load in the presence of strong electric fields. The decisive factors here are the vacuum conditions, the temperature distribution, the dielectric insulation strength by high-voltage application of up to 300 kV and the mechanical construction. We apply FEM to address the issue of thermal management and dielectric strength and to optimize the mechanical design of our cathode assembly and insulator.