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Abstract: In this work we use Comsol 
Multiphysics 4.2 to model a gas bubble 
expansion in a viscous liquid initially at rest. The 
aim of the present work is to improve a 
computational model developed early under 
simpler conditions [1], by considering now the 
expansion of a spherical bubble and more 
realistic physical properties. Surface tension 
effects on the gas-liquid interface are set for an 
aluminum-hydrogen system and a step function 
is considered for modeling the pressure on the 
boundary. Due to the axial symmetry, the model 
equations are solved on a two-dimensional mesh 
with adaptive mesh refinement in time. In order 
to capture the interface between the two fluids, 
the capabilities of the level set method are 
exploited. The numerical findings verify that the 
computational model is effective. The 
simulations, carried out for different cases, 
predict well bubble expansion, interface 
movement and fluid flow. 
 
Keywords: Bubble expansion, multiphase flow, 
level set. 
 
1. Introduction 
 

Bubble expansion phenomena plays an 
important role during metal foam processing. To 
produce a metal foam, a liquid metal (e.g. Al) 
can be foamed directly by injecting gas (H2) or 
gas releasing blowing agents (solid particles), or 
by producing supersaturated metal-gas solutions 
[2]. There is then a simultaneous mass, 
momentum and energy transfer between three 
phases, solid, liquid and gas. Experimental 
works carried out by observation techniques 
cannot be sometimes applied owing to the 
specific properties of liquid metals: they are hot, 
opaque and very reactive with oxygen. These 
mechanisms could then be modelled and studied 
by applying computational techniques, although 
the computational work is very challenging. On 
the other hand these phenomenon have major 

effects on the quality of metal foams. To give an 
example, during mould filling the desired metal 
foam density is dependent on the ability of 
controlling the gas bubble expansion. 

To accurately compute the evolution of  
interfaces in bubble dynamics, one interesting 
alternative Eulerian numerical formulation is 
provided by the level set method, which embeds 
the interface as the zero level set of a function. 
The method was first introduced by Osher and 
Sethian in 1988 [3] and has encountered 
extensive applications in multiphase flow 
modelling. Level set techniques have the 
additional advantage that they can easily provide 
accurate values for the normal direction and the 
curvature of a physical interface. 

Our multiphysics modelling work takes into 
account the expansion of a gas bubble embedded 
in a viscous liquid. The model considers the 
interface movement which is due to a pressure 
difference between the two phases. To model 
and solve the governing equations of the 
problem, we will use Comsol Multiphysics 4.2, 
in particular the level set interface available in 
the CFD module [4]. 
 
 
2. Model description and equations 
 

In this section we formulate the model and 
the assumptions done to reasonably simplify the 
problem.  
 
2.1 Model  

 
At time 0t , we consider a spherical gas 

bubble of initial radius R0, density ρG,0 and initial 
pressure pG,0 in static equilibrium with a 
surrounding liquid matrix of initial pressure 

0,EXTp . The gas in the bubble is considered to be 
compressible and following the ideal gas law, 
while the liquid is an incompressible Newtonian 
fluid. Gas and the liquid are immiscible, and 



there is spherical symmetry in the system. 
Further on, no heat transfer (T is the constant 
absolute temperature of the system) and mass 
diffusion are taken into account, although it is 
possible to extend this formulation to no-
isothermal problems and analyze also 
concentration gradients. The state of the stress is 
then given by the classical Young-Laplace 
equation, relating the pressure discontinuity 
across the interface to the surface tension σ and 
curvature R2  of the interface, that is 

 
0,00, 2 EXTG pRp      (1) 

 
In conjunction with these assumptions, we 
consider  that 0,EXTp  decreases its value, which is 
the onset of bubble growth: thus, at any time t, 
R(t) and pG(t) will be the new bubble radius and 
new gas pressure, respectively. Due to the 
spherical symmetry, the expansion causes the 
incompressible liquid to move radially oriented, 
where the velocity field u is only a function of  
the spherical radial coordinate r and time t. 

 Following the work of Gniloskurenko et al. 
[5],  who studied a cavity growth in a liquid 
metal around a gas releasing particle, the 
interface velocity may be obtained by the 
velocity field at r=R, this leads to: 
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With tension surface effects and considering the 
stress at r=R, the bubble radius may be 
calculated by solving an ordinary differential 
equation, as shown in [5]. Successively, we use 
the Gniloskurenko et al. ’s results, modeling the 
gas density ρG(t) as: 
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(3) 
 

where ηL is the dynamic viscosity of the liquid. 
 
 
2.2 Governing equations  

 
To model the expansion in Comsol 

Multiphysics, we select instead a Cartesian 

system of cylindrical coordinates (rAX, φ, z) and 
apply an axial symmetry condition around the z 
axis of the gas-liquid system, as depicted in 
Figure 1. With this assumption, the expansion 
takes place in a 2D liquid region Ω represented 
by a surface of radius RΩ. The gas liquid 
interface is a free surface with uniform local 
curvature κ while n is the unit normal to the 
interface. The expansion of the gas bubble 
embedded in a viscous liquid is numerically 
simulated by using the classical equations of 
fluid dynamics coupled to the level set method 
available in Comsol Multiphysics 4.2. The 
method is very well suited to describe the 
movement of the interface during the gas 
expansion. The compressibility of the gas in the 
bubble is computed with a weakly- compressible 
model, valid for gas flows with low Mach 
numbers (approximately 3.0Ma ). In this 
model, the gas density ρG(t) is given by the ideal 
gas law TnpV  , after introducing the molar 
mass M and  mass m ( Mmn  ). Then, for both 
the fluids, the coupled partial differential 
equations of the model are the following 
(Laminar Flow, Two Phase, Level Set Interface, 
[4]):  
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Figure 1. A gas bubble expanding in a 2D liquid 
region because of the axial symmetry around the z 
axis: at the beginning R(t)=R0, pG(t)=pG,0 and 
pEXT(t)=pEXT, 0. 
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The momentum transport equation (Eq. 5) relates 
the fluid velocity u to gravity force ρg, other 
body forces F, and the surface tension force FST  
acting at the interface between the two fluids 
(see [4] for more details on FST modeling). In the 
same equation I the identity tensor. The 
advection of the level set function   in the 
computational region is given by Eq. 6. To 
compute this field, a signed distance function at

0t  is used to build the function   which 
corresponds to the interface at the level set 

5.0 . In the same step the values of   inside 
the two phases are setting as 5.00   for one 
fluid (in our model is the liquid) and 15.0   
for the other (gas in the model). In Eq. 6 the 
parameter γ represents the reinitialization 
parameter  and controls the re-initialization 
performed at some later point in the calculation 
beyond 0t , need to preserve the values of 
distance close to the interface. Finally ε is the 
interface thickness parameter which adds extra 
numerical diffusion in order to stabilize the 
computations of Eq. 6.  

Boundary conditions are applied by 
considering the axial symmetry and also the 
symmetry around the rAX axis. In this way,  we 
reduce the computational domain  of  Figure 1 to 
a circular region with  RrAX0  and

 Rz0 . Finally, the external boundary of the 
Ω domain is outflow with Dirichlet condition 

0)( tpEXT  and vanishing viscous stresses. 
Multiphase phenomena in metal foam 

production give strong property gradients at fluid 
interfaces, which cause calculations to be carried 
out with some difficulties, due to instabilities in 
numerical computations.  Moreover, depending 
on the pressure difference between gas and liquid 
phase and the value of ηL, the expansion could be 
very fast. In fact, by means of equation (3) a gas 
bubble with 4

0 10R m would obtain an 
average interface velocity of  ~ 0.25 m/s for a 

pressure difference of 10 Pa and 310L  Pa·s. 
Consequently, a step function is introduced in 
the model for setting the condition 0)( tpEXT  
on the boundary and, in order to obtain 
convergence and compute a more accurate 
numerical solution, the mesh is refined in the 
proximity of gas-liquid interface. 

 
 

3. Numerical settings 
 

To simulate a hydrogen bubble of radius 0.01 
m expanding in aluminum liquid, we use the 
values of fluid properties given in Table 1, while 
other parameters of the model are shown in 
Table 2. In all the computations, the value of the 
surface tension is set for a real aluminum-
hydrogen system and gravity forces are not 
considered. The initial hydrogen density ρG,0, 
computed by the ideal gas law, is 0.02623 kg/m3 
and the constant hydrogen dynamic viscosity is 
10-3 Pa·s.   

When the initial pressure difference is large, 
we choose a higher value for the dynamic 
viscosity of the aluminum liquid, setting this to 
10-1 Pa·s. This is needed in order to reduce the 
velocity of the process and get convergence in 
the simulations. In the same way, the density of 
the liquid is taken lower, equal to 10 kg/m3, to 
reduce the strong density gradient across the 
interface. Instead, when the initial pressure 
difference between gas bubble and liquid is small 
(equal to 0.1 Pa), the values of aluminum 
viscosity and density are the real ones, close to 
2.4x10 kg/m3 and 4.5x10-3 Pa·s for a temperature 
of 933 K. Then, the maximum density ratio

GL  used in the simulations is 9.1x104 
approximately, while the minimum one is near to 
3.8x102.  

Using the maximum element size of Table 2 
and depending on the computations (sharper 
properties differences needing finer meshes) the 
global computational domain Ω has been 
covered by 8x104

 105 triangle elements, 
corresponding to more than 5x105

 6.5x105 
degrees of freedom. The calculations have been 
carried out with the direct solver PARDISO, 
Comsol Multiphysics version 4.2. The 
convergence obtained during computations was 
good, giving a step-size near to 10-3  10-5  s, 
function of the parameters of Table 2 and the 

 



Table 1: Fluid properties used in the simulations of a 
gas bubble expansion in liquid. 
 
Magnitude Symbol Value 
Case A, B and C 

Universal gas constant    8.314 
J/(mol·K) 

Gas molar mass M 2 g/mol 
Gas density  ρG Ideal gas 

and Eq.3. 
Gas viscosity ηG 10-3 Pa·s 
Surface tension 
coefficient 

σ  0.95   N/m  

Initial bubble radius R0 10-2 m 
Ambient pressure pEXT 0 Pa 
Constant temperature  T 933 K 
Case A 

Liquid density ρL 10 kg/m3  
Liquid viscosity ηL 10-1 Pa·s 
Initial bubble pressure pG,0 400 Pa  
Case B 

Liquid density ρL 10 kg/m3  
Liquid viscosity ηL 4.5x10-3 

Pa·s 
Initial bubble pressure pG,0 190.1 Pa  
Case C 

Liquid density ρL 2.4x103 
kg/m3  

Liquid viscosity ηL 4.5x10-3 
Pa·s 

Initial bubble pressure pG,0 190.1 Pa  
 
Table 2: Model parameters used in the simulations of 
a gas bubble expansion in liquid. 
 
Magnitude Symbol Value 
Case A, B and C   
Max element size of 
the mesh 

- 1x10-4 m 

Time stepping  - set by the 
solver 

Relative tolerance  - 10-3  
Absolute tolerance - 10-4  
Case A 
Interface thickness  ε 9x10-5 m 
Reinitialization γ 5.25 m/s 
Case B 
Interface thickness  ε 8x10-5 m 
Reinitialization γ 0.06 m/s 
Case C 
Interface thickness  ε 8x10-5 m 
Reinitialization γ 0.06 m/s 

velocity of the expansion process. The solution 
time is of  2x104  3x104 s, for a PC with Intel 
Xenon CPU X5660, 6 core, 2.80 GHz, 12 GB 
RAM, 64bit and Windows 7 Operative System. 

The simulations started by initializing the 
level set function, such that   varies smoothly 
from zero to one across the interface. 
Afterwards, the time dependent solver carried 
out the computations in order to simulate bubble 
expansion,  interface movement and fluid flow. 
 
 
4. Results and discussion 
  

Figure 2 shows the bubble growth in the 
liquid region for the case A. The volume gas 
fraction is plotted 0.001 s after the expansion 
starts, when the bubble has reached a radius of 
0.0141 m. For the same conditions, Figure 3 
gives the velocity field both for the gas and 
liquid.  We can observe that the maximum value 
of velocity magnitude is 4.6 m/s on the gas side 
of the interface. Defining the Reynolds number 

as 
L

RU


0Re  , where U is the average velocity 

of the interface and 
L

L
L




   the kinematic 

viscosity of the liquid, we obtain for the case A
 /sm01.0 2L  and 3.5Re  . This expansion is  

 

 
 

Figure 2. Expansion of a gas bubble in a liquid 
corresponding to the simulated case A (ρL=10 kg/m3, 
ηL=10-1 Pa·s,  pG,0=400 Pa), after 0.001 s. 



 
 

Figure 3. Velocity field in the gas and liquid region 
corresponding to the simulated case A (ρL=10 kg/m3, 
ηL=10-1 Pa·s,  pG,0=400 Pa), after 0.001 s. 
 

 
 

Figure 4. Pressure in the gas and liquid region 
corresponding to the simulated case B (ρL=10 kg/m3, 
ηL=4.5x10-3 Pa·s, pG,0=190.1 Pa), after 0.02 s. 
 
quite fast, although the Reynolds number is 
limited by a larger value of υL.  

In Figure 4 we have plotted the pressure for 
the case B at t=0.02 s, when the growing radius 
of the bubble is 0.0111 m. Note that for the 
spherical bubble, the gas pressure is uniform, but 
not constant, because the curvature of the gas-
liquid interface decreases as the bubble expands. 
From the figure, we observe that the bubble has 

reduced the pressure of approximately 17 Pa 
from its initial value, while the pressure in the 
liquid demonstrates correctly the value pEXT set 
on the boundary. The jump of dynamic pressure 
across the interface is about 173 Pa, lightly 
greater than the pressure discontinuity of 

2.171
0111.0

)95.0(22


R
 Pa, calculated under no 

flow conditions. The difference of a few Pa is 
just caused by the dynamic stress of the flow. 
For case B, the Re number is 1.22 and, as shown 
from the same Figure 4, the bubble experiences a 
movement which is slower if compared to the 
previous case A.  

The most interesting simulation is, of course, 
case C, because it refers to the growth of a 
hydrogen bubble in liquid aluminum. Using the 
values of Table 1, the kinematic viscosity of the 
aluminum is /sm109.1 26 xL  and the flow is 
characterized by 293Re  . This time, the 
expansion is even faster and after only 0.006 s 
the bubble shows a radius of 0.01044 m, as 
indicated in Figure 5. As expected, due to the 
density difference between the gas and the 
liquid,  the liquid moves away from the gas-
liquid interface as the bubble grows and expands 
(see Figure 6). Furthermore,  the magnitude of 
the liquid velocity decreases with increasing 
distance from the gas-liquid interface, as it can  
 

 
 

Figure 5. Expansion of a hydrogen bubble in liquid 
aluminum corresponding to the simulated case C 
(ρL=2.4x10 kg/m3, ηL=4.5x10-3 Pa·s, pG,0=190.1 Pa), 
after 0.006 s. 



be observed in the same Figure 6. 
 

 
 

Figure 6. Velocity field of a hydrogen bubble 
expanding in liquid aluminum, corresponding to the 
simulated case C (ρL=2.4x10 kg/m3, ηL=4.5x10-3 
Pa·s,  pG,0=190.1 Pa), after 0.004 s. 
 

 

5. Conclusions 
 

A model by Comsol Multiphysics has been 
presented for the simulation of a hydrogen 
bubble expansion in liquid aluminum. Bubble 
expansion was driven by a pressure difference 
between the two phases in presence of surface 
tension effects, computing the flow both in the 
liquid and gas region. To set the external 
pressure on the boundaries, a step function has 
been used, while mesh refinement was applied in 
order to calculate the strong gradients close to 
the interface.  

The numerical findings verify that the 
computational model, based on a level set 
technique for capturing the phase interface, is 
effective. The simulations, carried out for 
different cases, predict well bubble expansion,  
interface movement and fluid flow. We think to  
to extend the model in order to compute foam 
expansions, taking into account other 
mechanisms, like mass diffusion and heat 
transfer. However, when employing a 
comprehensive model for foaming process, a 
multiple bubbles model should be also 
considered.  
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