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Abstract: The tertiary current distributions on 
rotating electrodes are studied in this work. An 
acid copper sulfate electrolyte is used within an 
electrochemical cell of practical dimensions. The 
distributions of ion concentrations are obtained 
by the two-dimensional fluid flow simulation 
and the solution of mass-transport equations 
based on axial symmetry. The calculated 
concentration boundary layer thicknesses agree 
well with those from Levich equation. It is found 
that the tertiary current distribution on working 
electrode is affected by the rotating velocity of 
electrode and the effect disappears with the 
increase of rotating velocity up to 1000 rpm in 
comparison with the secondary current 
distribution. The tertiary current distributions for 
three types of working electrode are calculated 
and an improved shape of working electrode is 
proposed. 
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1. Introduction 
 

Rotating electrodes are primarily employed 
to impose forced convection on an electrode 
reaction, to negate vagaries of free convection 
that can arise as a result of thermal and density 
changes in the vicinity of the electrode/ 
electrolyte interface [1].  

Hydrohynamic electrochemical processes 
with the rotating electrode have been described 
for mass-transport studies [2,3]. Dong and co-
workers [2] solved the velocity and pressure 
profiles in the electrolyte due to a rotating 
electrode, in which the hydrodynamic models 
were coupled with a mass-transport model for 
oxygen reduction reaction at the surface of the 
rotating electrode. Barcia and co-workers [3] 
studied the frequency response of the limiting 
current to a sinusoidal speed modulation at a 
rotating hemispherical electrode (RHSE). The 
unsteady hydrodynamic problem and the 
unsteady mass transport problem were solved, in 
which the theoretical expression of the 

electrohydro-dynamic impedance (EHD) was 
presented.  

It is known that at currents much below the 
limiting current, the solution of the current 
density can be regarded as the potential theory 
problem [4], i.e., the current distribution is 
determined by the ohmic potential drop in the 
solution and the electrode overvoltage, termed as 
secondary current distribution, in which the 
current distribution determined only by the 
ohmic potential drop in the solution is termed as 
primary current distribution. However, in the 
cases close to the limiting current, diffusion and 
convective transport become essential [5], which 
was termed as the tertiary current problem by 
Averill and Mahmood [6]. Low and co-workers 
[7] performed the simulations of the non-uniform 
current, potential and concentration distributions 
along the cathode of a rotating cylinder Hull 
(RCH) cell. They examined the primary, 
secondary, and tertiary current distributions. In 
their research, the concentration distribution was 
solved only within the boundary layer using a 
Laplace equation ׏ଶܿ ൌ 0,  where c is the 
concentration. Outside the boundary layer the 
concentration was assumed to be constant, i.e., 
the bulk concentration. The thickness of the 
boundary layer was determined by the 
Eisenberg’s empiric correlation. Unfortunately, 
the thickness of concentration boundary layer is 
usually unknown, which depends on fluid 
dynamics around working electrode.   

In this work, we coupled the calculations of 
fluid flows and current distributions. The effect 
of fluid flows on the current distributions on 
electrode surface was presented. The tertiary 
current distributions were compared with the 
secondary current distributions and the different 
shapes of working electrodes were analyzed and 
discussed.  
 
2. Numerical Model  
 

The model geometry used in this work is 
shown in Fig. 1. The dimensions of the electro-
chemical cell are determined by practical 
measurement using glass beaker [8]. It is well 
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a diameter of 2 mm, i.e., less than 1/2 of surface 
area of working electrode, which is a strict 
dimension for measurement such as polarization 
characteristics [8]. It could thus be proposed that 
the substitution of hemispherical working 
electrode for planar working electrode would 
improve the accuracy of practical measurement. 
 
4. Conclusions 
 

This paper presented the study of tertiary 
current distributions on rotating electrodes. The 
coupled solution of fluid equations and mass-
transport equations were performed. The 
concentration distributions were obtained and the 
calculated concentration boundary layer 
thicknesses agreed well with those of Levich 
equation. The comparison of the tertiary current 
distributions with the secondary current 
distributions demonstrated that the control of the 
rotating velocity could reduce the effect of fluid 
flows.  

Simulations demonstrated that a practical 
range of fluid dynamics, concentration 
distribution, concentration boundary layer, 
tertiary current distribution, and secondary 
current distribution were achievable in the 
electrochemical cell employing a rotating 
electrode. The study of the current distributions 
for different types of working electrode indicated 
that the hemispherical working electrode would 
be a better choice to improve the accuracy of 
measurement.  
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