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Application of colloidal QD
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Shape control of colloidal QD
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Proposed model of a CdTe tetrapod
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61, 369, 2010




CdTe/CdS core-shell tetrapods

band diagram e With continuously grown CdS shell (h
CdTe CdTe tetrapod , features of type Il
heterostructures were observed in
experiment, e.g. featureless
absorption tail @ t=1.2 nm

e Study the influence of CdS shell on the
exciton state , consequently the
optical properties of core-shell
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R. B. Vasiliev, et al. Mendeleev Commun. 19, 128 (2009) t=CdS shell thickness



Theoretical model

(1)Single particle Schrodinger equation (Effective-mass approximation)
Solved with finite element method by using COMSOL software

nice tool for
W;(r;) = i(ri)ui(ri)  i=eorh modeling QD
with complicated
P is the envelope function and U; is the atomic wave function P
geometry

H;(r;)pi(ri) = {—f;ﬁf + Vé(?‘i)} wi(ri) = Eipi(ri)

Consider the lowest 20 electron and 20 hole states, whose wave
functions only have Al or T2 symmetry

(2)Two-body Schrodinger equation
Solved with configuration interaction method
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3D model of CdTe/CdS
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) U(re,rn) = ExV(re,rp) core-shell tetrapod
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Same method as: K. Sakoda et al., Opt. Mat. Express 1, 379 (2011).



Lowest electron state(el) and highest hole state(hl)
wave function distribution




Overlap integral

Single-particle state el&h1 overlap integral
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Shell thickness dependence of exciton energy with

Al and T2 symmetry
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Analytical calculation (1)

Constructed electron wave function, combination of 4
independent wave function on each branch

A1 = 1(¢1 Fatdsta),
A=t dr—ds—or), @
oy = (cm — g2t ds— 1), 03

A= Sor—da—ds o), @

two-body matrix element
(kl(s)|H2lig(s)) = (lkj|H2|ilZ — z(jk|H2|il2, (5)
direct Coulomb exchange interaction

In which matrix element

(k| Halil) = / / dridragl" (r) P (r1)
(6)
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3 degenerated states

@ t=1.2 nm, the order of lowest
4 exciton states NOT change.

Safe to choose only lowest 4 pair
states for analytical calculation.
(elhl, e2hl, e3h1, e4hl)



Analytical calculation (2)

Diagonal matrix element

(A) Coulomb integral
same value for 4 diagonal elements

(B) exchange interaction integral (elh1)
2 1
_2<_]’L|H2|’Lj> = 2//dT1dT2 606|’rj0 r2| Z
# [p1(r1) + d2(r1) + d3(r1) + da(r1)] wn1(r1)
x[p1(r2) + d2(r2) + ¢3(r2) + da(r2)] wn1(r2)

exchange interaction integral (e2h1, e3h1, e4hl)

€ 1

—2(ji|Hslij) = 2//d'r1d’r2€06|r1 ey 1
 [p1(r1) + d2(r1) — ¢3(r1) — da(r1)] en1(r1)

 [p1(r2) + d2(r2) — P3(12) — Pa(r2)] Pr1(72)

diagonal element of elh1(Al) is larger than
other three(T2)

Off-diagonal matrix element
(A)direct Coulomb integral

All off-diagonal elements for direct
Coulomb integral are zero

(B) exchange interaction integral
All off-diagonal elements for

exchange interaction integral are
zero
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Conclusion of analytical
calculation:

The symmetry of lowest
exciton state (t=1.2 nm) is T2
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Symmetry break in core-shell tetrapod
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Conclusion

 The electronic states of core-shell tetrapod with various shell
thickness are calculated. Lowest 20 electron and hole wave
functions have Al or T2 symmetry.

o At t=1.2 nm, the carriers separation is not serious, core-shell
tetrapod is not apparent type Il heterostructure.

o EXxciton states were investigated as a function of t. For large t,
the lowest exciton state has T2 symmetry, which implys
nonluminescence in emission spectrum.

e Core-shell tetrapod with broken symmetry shows non-zero
oscillator strength for lowest exciton state.
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