Computer simulation of drug release kinetics of Mauran-Chitosan Nanoparticle in COMSOL

By:-

Sreejith Raveendran, Toyo University, Japan. Sanal Sukuvihar, Senshin Technologies, Japan. Prof. Dr. Sakthi Kumar, Toyo University, Japan Prof. Dr. Toru Maekawa, Toyo University, Japan

Abstract

- •Bionanotechnology is a stream of modern science that deals with the study of biotechnology & nanotechnology applications.
- •Drug delivery applications as a key area of research attains more critical approaches where the role of nanoparticles are inevitable.
- •Biocompatible, non-cytotoxic hybrid mauran- chitosan nanoparticles has been synthesized and the drug release kinetics were performed using computer simulation.
- •Computer simulation of drug release from these nanoparticles were performed using COMSOL4.2a version

Introduction

- Extremophilic bacteria- *Halomonas maura*, moderately halophilic bacterium producing mauran, sulfated polysaccharides used for the studies.
- Mauran- Chitosan nanoparticles can be used for various biomedical applications including drug delivery purposes, since they are found to be biologically compatible.

Fig.1: *Halomonas maura* showing mauran release.

Fig.2: Mauran- Chitosan nanoparticles.

Fig.3: 5-Fluorouracil loaded

Mauran- Chitosan

nanoparticles.

Drug Release Kinetics

- •Drug loaded nanoparticles on *invivo* delivery will reach the blood. The release of the drug from the nanoparticles can be either sustained or burst release., which is defined by kinetics.
- •*Invitro* studies can be performed by mimicking the *invivo* setup, in which the drug loaded nanoparticles will be dispersed in a dissolution medium and the drug released were quantified using spectrophotometry.
- •The release pattern can be plotted using drug concentration (%w/v) & time(hrs) period of release within 24hrs.
- •This will help to conclude the release is sustained or not.

Physico-Chemical properties

- MR/CH nanoparticles formed are of size 30-200nm; spherical to quasispherical in shape.
- It can with stand acidic pH and hence suitable for oral drug delivery.
- Nanoparticles remain Stable for a minimum 8 weeks of time, with out degradation.
- Posses a Positive zeta potential of $27.5 \pm 5 \text{mV}$
- Hence can bind negatively charged peptides, drugs or small biomolecules.
- Since the raw material- mauran and chitosan is found to be biodegradable and biocompatible with less cytotoxicity, the nanoparticles can be an excellent molecule for biomedical applications.

Simulation in COMSOL

- •Here we describe the release of the encapsulated drug from the nanoparticle of size 105nm, by assuming as a biomaterial matrix carrying drug to a target cell.
 - •With this simulation it is easy to investigate & design the parameters governing the rate of drug release such as:
 - •Drug-to-biomaterial affinity
 - Biomaterial degradation
 - Drug loading
 - •The influence of geometry and composition of the biomaterial matrix.

- •In this model a drug is released into a targeted region containing cancer cells or damaged tissues.
- •The biomaterial i.e Mauran- chitosan nanoparticle holding the drug has a spherical shape and can serve various purposes depending on the target and application:
- •Drug can act as a guide to help regeneration of damaged tissues
- •Stimulates the healing process through targeted drug release.
- •Kill cancer cells or etiological agent via targeted drug release

The model simulates Chemical species transport – Transport of Diluted Species module in a 2D geometry with axial symmetry.

Model Description

Mesh

Loads and Boundary conditions

- In the biomaterial matrix, a drug molecule, *d*, binds to a polysaccharide, *p*, which in turn is anchored to the matrix, *m*. Matrix-bound species are labeled *mpd* and *mp*, respectively, the latter referring to a species where no drug is bound to the polysaccharide. Species *mpd* and *mp* are active only in subdomain $\Omega 2$.
- Two mechanisms release the drug from the matrix:
- The drug can simply dissociate from the matrix site *mp*.
- Matrix degradation by an enzyme, *e*, originating from the cell-tissue domain, leads to release of the drugpolysaccharide species, *pd*, from which the drugsubsequently dissociates. The unbound species *p*, *d*, *pd*, and *e* are active in the entire model domain. Next Figure illustrates the complete reaction scheme.

Reaction scheme describing drug dissociation/association reactions (horizontal) and matrix-degradation reactions (vertical).

The simulation makes use of two diffusion application modes in the Chemical Engineering Module. The time-dependent mass balance per species is described by

$$\frac{\partial c_i}{\partial t} + \nabla \cdot (-D_{ik} \nabla c_i) = R_{ik}$$

where Dik(m2/s) is the diffusion coefficient for species i in the medium of drug. Further, $Rik(mol/(m3\cdot s))$ is the rate expression for species i in the medium. In the matrix, all the reactions described in Figure above are possible, leading to the following rate expressions:

a= Variables

▼ Variables

Name	Expression	Unit	Description
k3f	7.336e-3		
kM	0.01		
k1f	k1f_input		
k2f	k1f		
k1r	k1r_input		
k2r	k1r		

a= Variables

Geometric Entity Selection

Geometric entity level: Domain

Selection: Manual

2

▼ Variables

Name	Expression	Unit
Rc_d	-k1f*c_d*(c_mp+c_p)+k1r*(c_mpd+c_pd)	
Rc_mp	-r_1-R_mm_mp	
Rc_mpd	r_1-R_mm_mpd	
Rc_p	-r_2+R_mm_mp	
Rc_pd	r_2+R_mm_mpd	
Rc_e	0	

The rate terms RMMmp and RMMmpd refer to the Michaelis-Menten kinetics describing the enzyme catalyzed degradation of the matrix:

$$R_{MMmp} = \frac{V_{\max} c_{mp}}{K_M + c_{mp}}$$

$$R_{MMmpd} = \frac{V_{\max} c_{mpd}}{K_M + c_{mpd}}$$

$$V_{\max} = k_3^f c_e$$

$$K_M = \frac{k_3^f + k_2^r}{k_2^f}$$

Results

The effect of enzyme degradation is visible with matrix bound Initial concentration of drug, and Polysaccharide is decreasing with time.

Concentrations of the reacting species (mol/m3) as functions of time (s)

Results

Results

Conclusion

- A 2D axisymmetric model of the Mauran-Chotosan nano particle is modelled in Comsol Multiphysics.
- Diffusion Matrix was defined.
- Concentration and Reactions simulated.
- Time dependent analysis study the process done.
- Simulation of the Drug delivery is done with COMSOL Multiphysics 4.2a
- Visualization of the Diffusion, Surface concentration, output could be done with COMSOL Multiphysics 4.2a.
- The above study can help research to move at a faster pace and in a cost effective manner with increased accuracy.
- Above study could be modified by simulation of actual chemical reaction in the elements and degradation of the drug chemical to human cells.

Thank you