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Abstract: We present an optimization procedure 
to optimize the maximum coupling of free space 
optical wave to surface plasmon.. Shape 
derivative from shape sensitivity analysis is 
calculated, and the corresponding partial 
derivatives of the objective functional with 
respect to finite number of design variables are 
derived. Even though only a local optimal 
configuration for a given initial condition is 
obtained due to the complexity of the problem, 
the objective functional converges rapidly to a 
near optimal one. 
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1. Introduction 

Surface plasmons [1] are alternating currents 
propagating along the interface between metal 
and dielectrics as shown in Figure 1. The 
plasmonic wave generated has the remarkable 
property of x-ray wavelength but only optical 
frequency. For this reason, the energy focused 
from photon in free space to sub-wavelength 
dimensions can be used in a variety of 
applications in nanoscale technology, including 
Heat Assisted Magnetic Recording (HAMR), 
nanolithography, and communications among 
computer.  
 

 
Figure 1. Surface plasmonic wave excited along the 
interface between metal and dielectrics. 
 

It can be show that time harmonic wave 
propagates along the interface, while decaying 
exponentially away from the interface. In the 
Transverse Magnetic mode, the whole 
electromagnetic field is characterized by one 

single variable Hz(x,y), the magnetic field in z 
direction and defined on x-y plane. The surface 
wave has the following form 

 
where x is the direction of propagation of the 
wave, j2=-1,  and the constants kd, km and ksp are 
related by  
 

 

 
Here εm(ω), εd(ω) are the relative dielectric 
constant of metal and the dielectrics and k0 is the 
wave number in free space. Therefore a 
necessary condition for the excitation of surface 
plasmon is 0<εd<-εm. 

In this paper, the problem of designing an 
efficient grating coupler which generates surface 
plasmons from free space optical waves is 
considered. The design variable is the interface 
profile between the metal (Ag) and dielectrics 
(SiO2) and here we only consider the geometry 
with finite number of gratings. The same 
problem is tackled with a different approach in 
[2], however the sequential optimization 
procedure used there is only near optimal.  Here, 
using the state-of-the-art theory developed in 
shape analysis, we derive the relation, called the 
shape derivative, between the change of the 
profile and that of the objective function (defined 
to be the output coupled energy along the 
interface). Then a gradient ascent approach is 
applied to find the optimal grating coupler.  

 
2. Mathematical Formulation of the 
design problem 

 
For a given input beam of photon, the 

amount of energy coupled into the surface wave 
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can be characterized as the Poynting vector along 
a surface (a line in 2D our geometry) Γ. In 
another word, we want to design a grating 
coupler for the following optimization problem 

 

 
where Ω is the geometry (the position of the 
gratings) we want to optimize. Using the fact 
that all the field quantities can be written as a 
function of Hz only, the above objective 
functional can be simplified as 
 

 
 

Here the magnetic field Hz satisfies the following 
Helmholtz equation 
 

 
The relative dielectric constant εr is either εm or 
εd, depending on the domain. We concentrate 
mainly on gratings that are characterized by a 
few discrete variables (xi’s,hi’s) as in Figure 2, 
even though shape sensitivity analysis in next 
section can be applied to arbitrary geometry. 
 

 
Figure 2. The design variables that characterize the 
geometry of the problem. 
 
 
3. Shape Sensitivity analysis 
 

Since for general shape optimization problem 
the unknown is a geometric object, there are 
certain special difficulties associated with it. 
Firstly, we need to find a way to represent to 
unknown geometry. In some cases, the geometry 
may be represented as finite number of discrete 
variables, or points. However, it is hard to handle 
topological changes like merging or breaking. 
Secondly, it is not so straightforward to find the 
gradient of the objective functional with respect 
to the design variables, even in cases with finite 

number of parameters. Up to now, there are two 
types of methods to treat general shape or 
topology optimization. The first one is 
distributed material method [3], in which the 
material are characterized by a continuous 
density and extra cares need be taken to restrict 
the density to be piecewise constant to 
approximate the real material. The second is to 
treat the exact geometry, and the boundary of the 
shape is evolved to optimize the objective 
functional [4].  Real progress was made starting 
from the seminal work of Sokolowski and 
Zolesio [5] [6], in which the domain Ω is 
interpreted as a dynamic one Ωt depending on 
time t. We assume Ωt is evolved from Ω0 with 
some defined velocity V(y,t) on Ωt, i.e 

 

 
The second approach enjoyed many successes in 
different applications together with other 
progress made in mathematics [7] [8], and is the 
one taken in this paper. For any given velocity 
field, we can calculate the shape derivative of the 
objective function in the direction of the velocity, 

 
Following [3], assuming the velocity on the fixed 
boundary are all zero, then the shape sensitivity 
is  

 
Here Γm is the part of the boundary we want to 
evolve to optimize the objective functional, 
which is assumed to be different from Γ, the 
boundary along which we calculate the objective 
functional. [x] means the jump of the quantity x 
across the interface. If there is no jump in the 
properties in the material or the material is 
homogeneous, the change of any interior 
boundary has no effects on the objective 
functional. The superscript + and – denote the 
one sided derivative of the gradients in the upper 
or lower stream direction of the normal vector n 
on the boundary. Vn is the normal component of 
the velocity field V and u is the adjoint variable, 
whose solution satisfies the adjoint equation 



 
The adjoint equation can be interpreted as the 
Lagrange Multiplier to the constraint governing 
Helmholtz equation (4) for Hz of the 
optimization problem. Adjoint equations are 
employed extensive and essential to facilitate the 
calculation of shape derivative in shape 
optimization. However, it is absent from certain 
applications, like those from structure 
optimization or symmetric eigenvalue problems, 
because the governing equation is self-adjoint 
and the objective functional is a special one, such 
that the adjoint variable is the same as the 
solution of the governing equation. For 
computational convenience, the adjoint variable 
used here is actually the complex conjugate of 
the Lagrange Multiplier in the usual sense.  
Because of the discontinuity in εr, the gradient of 
Hz and u are not continuous across the interface. 
However, using the boundary condition across 
the interface, the numerical value from the two 
formulas are the same as long as we don’t choose 
the one sided gradients of Hz and u from the 
same sides. The results are also independent on 
the sign of the normal direction n, since it 
appears exactly twice as a product.  
 
4. Numerical Methods and results 
 
4.1 Gradients of the objective functional 
 

Once we find the shape derivative, we can 
get the velocity (actually only the normal 
direction of the velocity) leading to local 
minimum or maximum of the objective 
functional. In current problem, for general 
geometry, the normal component of the velocity 
on the boundary to choose to maximize the 
objective functional is 

 
The geometry can be uniquely determined by 

moving the boundary points of the interface in 
the normal direction according to the velocity Vn. 
In practical engineering design, it turns out that 
finite gratings determined by a few parameters 
are sufficient. There may be difficulties 
fabricating general structures due to the 

resolution limit of lithography. In this situation, 
the objective functional is actually J(x1, x2,…, 
xN,h1, h2,…, hM). The gradient of the objective 
function with respect to these variables can be 
calculated with the analysis from last section, 
and are appropriate integrals along the boundary 
corresponding to that variable. For example, let I 
be the bottom horizontal boundary of the first  
grating in Figure 2, the we have 

 
Once we find all the partial derivatives of the 

objective function, what follows are just standard 
gradient ascent methods in optimization. Those 
partial derivatives can also be calculated from 
finite differences by varying the variables by a 
small amount. However, the numerical 
discretization error could be amplified by order 
of magnitudes, leading to an inaccurate 
derivative and possible failure of the method.  
 
4.2 Comsol PDE simulation settings 

 
The simulations are performed using 

COMSOL Multiphysics 3.3 in RF module, in-
plane waves in TM mode. The parameters can be 
found from Table 1 in the appendix, and the 
computational domain is wrapped by a perfectly 
matched layer (PLM). An input Gaussian beam 
is specified on one of the dielectric boundary. To 
reduce the total computational time and relax the 
memory requirement, the two governing 
equations (4) and (7) are solved sequentially. 
Once Hz is found, we can setup the equation (7) 
in weak form easily: the left hand coefficient are 
the same as (4), while the right hand side is just a 
integral on the boundary Γ in contrast to a 
domain integral in the usual case. In this way, 
the total number of mesh points can be twice as 
large as the maximum of solving two equations 
simultaneously. 

 
4.3 Numerical results and discussion 
 

Starting with three gratings, assuming all the 
gratings have the same height, we have seven 
variables for the problem to optimize. The final 
optimal grating is shown in Figure 3 and the 
convergence of the method (number of iterations 
versus the value of the objective functional)  in 
Figure 4. As we can see from Figure 4, for any 
initial configuration, the method converges 



rapidly to a local maximal. The small oscillation 
near the end of the simulation comes from 
numerical discretization error and different mesh 
generation.  
 

 
Figure 3. The final optimal design for three gratings 
 

 
Figure 4. The convergence of the optimization 
methods 
 
5. Conclusion 
 

An optimal design of the gratings to couple 
maximum amount of free space photon into 
surface plasmon wave is implemented by using 
COMSOL Multiphysics.  The optimization 
procedure is much better than those traditional 
ones, because the gradients can be calculated 
much more accurately. Using a gradient ascent 
approach, the method converges fast to a local 
optimal design. 
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7. Appendix 

 
Table 1: Parameters used in the simulation 
 
Parameter Name Symbol Numerical

value 

Input Free space 
light wavelength 

λ0 = 2π/k0 420 nm 

Relative dielectric 
constant of Ag 

εm -4.5365 

Relative dielectric 
constant of SiO2

εd 2.25 

 


