SIMULATION OF THERMAL SENSOR FOR SPACECRAFT THERMAL CONTROL USING COMSOL

Gauri Mangalgiri Bits-Pilani KK Birla Goa Campus

INTRODUCTION

- OVER HEATING IS A MAJOR CAUSE OF FAILURE OF MAJORITY OF SPACE MISSIONS.
- SUCCESS OF THERMAL CONTROL SYSTEM DEPENDS ON DESIGN OF THERMAL CONTROL SYSTEM
- SENSOR ACTUATING THE THERMAL CONTROL SYSTEM PLAYS AN IMPORTANT ROLE IN THE MISSON
- EFFICIENT DESIGN OF THE THERMAL SENSOR . NEED OF THE HOUR

EFFICIENT DESIGN

- COMPATIBLE AND OPERABLE WITH SMALL SIZED OF SATELLITES
- > SPONTANEOUS RESPONSE
- EASE OF OPERATION

MECHANSIM Piezoelectric **Bimetallic** MOSFET Crystal **Micro Beam**

GEOMETRY REPRESENTATION

BIMETALLIC BEAM

- DRIVING FORCE OF THE MECHANSIM
- PRIMARY SENSING ELEMENT
- ✤ IN DIRECT CONTACT WITH THE BODY OF THE SATELLITE
- ◆ USES DIFFERENCE IN THERMAL EXPANSION COEFFICIENT OF TWO MATERIALS
- ✤ STIMULATES THE PIEZOELECTRIC CRYSTAL

GOVERNING EQUATIONS

 $(\dot{\alpha}_1 Y_1 - \dot{\alpha}_2 Y_2) \times \Delta T$ Difference in thermal stress

$$\epsilon_{\mathbf{x}} = \frac{1}{E} \left[\sigma_{\mathbf{x}} - \vartheta (\sigma_{\mathbf{y}} + \sigma_{\mathbf{z}}) \right] + \alpha \Delta T$$
 Net Strain

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + X = 0 Volume Equilibrium$$

PIEZOELECTRIC CRYSTAL

- ✤ THE IMPINGING BIMETALLIC BEAM STIMULATES THE PIEZOELECTRIC CRYSTAL
- COMPRESSION RESULTS IN INDUCED POLARISATION IN THE CRYSTAL AT THE LATTICE LEVEL
- CHARGE SEPERATION RESULTS VOLTAGE DIFFERENCE ACROSS THE TWO FACES OF THE CRYSTAL
- ✤ THIS VOLTAGE IS FED TO THE MOSFET

GOVERNING EQUATIONS

$D = hS + b^{S}E$ Field Equation

 $\mathbf{\phi} = N_{\phi} \widehat{\mathbf{\phi}}$ Interpolation

 $[K_{u\phi}^{T}]u + [K_{\phi\phi}]\phi = \{Q\}$ Coupling Equation

MOSFET

VOLTAGE FROM THE PIEZOELECTRIC CYRSTAL FED TO THE GATE AND SOURCE TERMINALS

> BIAS CRITERIA : GATE SOURCE VOLTAGE GREATER THAN THRESHOLD VOLTAGE MET

> > CURRENT FLOWS FROM THE SOURCE TO DRAIN TO ACTUATE THE THERMAL CONTROL SYSTEM

GOVERNING EQUATION

$$(V_{GS} - v(x) - V_t) \times (Wdx) \times C_{ox} = dq$$

RESULTS – STRESS DISTRIBUTION IN THE BEAM

DISPLACEMENT OF THE BEAM

ELECTRIC DISPLACEMENT OF PIEZOELECTRIC CRYSTAL

VOLTAGE DISTRIBUTION ACROSS THE MOSFET

THANK YOU

Questions